Beta–Lactam Drug Resistance Pattern in Staphylococcus aureus Isolates: A Review

Authors

DOI:

https://doi.org/10.23918/eajse.v9i3p13

Keywords:

Antibiotics, β-Lactamase, Methicillin, MRSA, Penicillinase, Staphylococcus aureus

Abstract

Methicillin Resistance Staphylococcus aureus (MRSA) is a serious human disease also considered as a chronological developing zoonotic pathogen of common health and in term of veterinary concern. Pyoginic endocariditis, otitis media, food poisoning, pyogenic infection of the soft tissues and the skin, suppurative pneumonia, and osteomyelitis all are prevalent infection of MRSA in people.

 

MRSA can induce botryomycosis and infected contamination in horses; severe mastitis and pyogenic infection in cattle and ewes with marked toxemia; pustular dermatitis in dogs and cats as well as food poisoning; greasy pig disease in pigs which also called exudative epidermatitis.

 

A number of multilevel random-effects models were fitted to estimate mean occurrence rates of antibiotic-resistant Saureus, and subgroup analyses were performed to compare antibiotic resistance rates of Saureus throughout the years and among the methods to determine the antimicrobial susceptibility.

 

This review provides a comprehensive illustration about MRSA including background, epidemiology, resistance, and others. On other hands, different types of antibiotics have been mentioned in which they have been utilized against Saureus and their mechanism of action is explained as well. Therefore, this review is helpful by its simpleness and comprehensive contents.

References

[1] Jenul C, Horswill AR. Regulation of Staphylococcus aureus virulence. Microbiology spectrum.

2019;7(2):7.2. 29. https://doi.org/10.1128/microbiolspec.gpp3-0031-2018.

[2] Adams M, Moss M, McClure P. Food Microbiology, London, UK, Royal Society of

Chemistry, 1995: 121-122. ISBN (Printed): 1849739609.

[3] Cheung GY, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence.

2021;12(1):547-69. https://doi.org/10.1080/21505594.2021.1878688.

[4] Rasigade J-P, Dumitrescu O, Lina G. New epidemiology of Staphylococcus aureus infections.

Clinical Microbiology and Infection. 2014;20(7):587-8. https://doi.org/10.1111/1469-

0691.12718.

[5] Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler Jr VG. Staphylococcus aureus

infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical

microbiology reviews. 2015;28(3):603-61. https://doi.org/10.1128/cmr.00134-14.

[6] Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H, et al. Meticillinresistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing

methods. International journal of antimicrobial agents. 2012; 39(4) :273-82.

https://doi.org/10.1016/j.ijantimicag.2011.09.030.

[7] Rasmi AH, Ahmed EF, Darwish AMA, Gad GFM. Virulence genes distributed among

Staphylococcus aureus causing wound infections and their correlation to antibiotic resistance.

BMC Infectious Diseases. 2022;22(1):652. https://doi.org/10.1186/s12879-022-07624-8.

[8] Vestergaard M, Frees D, Ingmer H. Antibiotic resistance and the MRSA problem.

Microbiology spectrum. 2019; 7(2):10. https://doi.org/10.1128/microbiolspec.gpp3-0057-2018.

[9] Algammal AM, Hetta HF, Elkelish A, Alkhalifah DHH, Hozzein WN, Batiha GE-S, et al.

Methicillin-Resistant Staphylococcus aureus (MRSA): one health perspective approach to the

bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact.

Infection and Drug Resistance. 2020:3255-65. https://doi.org/10.2147/idr.s272733.

[10] Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus.

Annual review of biochemistry. 2015;84:577-601. https://doi.org/10.1146/annurev-biochem060614-034516.

[11] Kitti T, Boonyonying K, Sitthisak S. Prevalence of methicillin-resistant Staphylococcus aureus

among university students in Thailand. Southeast Asian Journal of Tropical Medicineand

Public Health. 2011;42(6):1498. PMID: 22299421.

[12] Prenafeta A, Sitjà M, Holmes MA, Paterson GK. Biofilm production characterization of mecA

and mecC methicillin-resistant Staphylococcus aureus isolated from bovine milk in Great

Britain. Journal of Dairy Science. 2014;97(8):4838-41. https://doi.org/10.3168/jds.2014-7986.

[13] Gajdács M, Zsoldiné Urbán E. Epidemiology and resistance trends of Staphylococcus aureus

isolated from vaginal samples: a 10-year retrospective study in Hungary. Acta

Dermatovenerologica Alpina, Pannonica et Adriatica. 2019;28(4):143-7. PMID: 31855266.

[14] Azeez-Akande O. Global trend of methicillin-resistant Staphlococcus aureus and emerging

challenges for control. African Journal of Clinical and Experimental Microbiology. 2010;11(3):

150-158. https://doi.org/10.4314/ajcem.v11i3.57771.

[15] Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne

disease: an ongoing challenge in public health. BioMed research international. 2014;2014: 1-9.

https://doi.org/10.1155/2014/827965.

[16] Heaton CJ, Gerbig GR, Sensius LD, Patel V, Smith TC. Staphylococcus aureus epidemiology

in wildlife: A systematic review. Antibiotics. 2020;9(2):89.

https://doi.org/10.3390/antibiotics9020089.

[17] Shimizu M, Mihara T, Ohara J, Inoue K, Kinoshita M, Sawa T. Relationship between mortality

and molecular epidemiology of methicillin-resistant Staphylococcus aureus bacteremia. Plos

one. 2022;17(7):e0271115. https://doi.org/10.1371/journal.pone.0271115.

[18] Haag AF, Fitzgerald JR, Penadés JR. Staphylococcus aureus in Animals. Microbiology

Spectrum. 2019;7(3):1-19. https://doi.org/10.1128/microbiolspec.gpp3-0060-2019.

[19] Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, et al. Complete genomes

of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and

drug resistance. Proceedings of the National Academy of Sciences. 2004; 101 (26): 9786-9791.

https://doi.org/10.1073/pnas.0402521101.

[20] Breurec S, Zriouil S, Fall C, Boisier P, Brisse S, Djibo S, et al. Epidemiology of methicillinresistant Staphylococcus aureus lineages in five major African towns: emergence and spread of

atypical clones. Clinical Microbiology and Infection. 2011;17(2):160-5.

https://doi.org/10.1111/j.1469-0691.2010.03219.x.

[21] Stegger M, Wirth T, Andersen PS, Skov RL, De Grassi A, Simões PM, et al. Origin and

evolution of European community-acquired methicillin-resistant Staphylococcus aureus.

MBio. 2014; 5 (5). https://doi.org/10.1128/mbio.01044-14.

[22] Abdulgader SM, Shittu AO, Nicol MP, Kaba M. Molecular epidemiology of Methicillinresistant Staphylococcus aureus in Africa: a systematic review. Frontiers in microbiology.

2015; 6:348. https://doi.org/10.3389/fmicb.2015.00348.

[23] Grema HA, Geidam YA, Gadzama GB, Ameh JA, Suleiman A. Methicillin resistant

Staphylococcus aureus (MRSA): a review. Adv Anim Vet Sci. 2015;3(2):79-98.

http://dx.doi.org/10.14737/journal.aavs/2015/3.2.79.98.

[24] Fleming A. Penicillin. British medical journal. 1941; 2(4210): 386.

https://doi.org/10.1136/bmj.2.4519.242.

[25] Buhner SH. Herbal antibiotics: natural alternatives for treating drug-resistant bacteria. New

York, USA: Storey Publishing, LLC, 2012. ISBN (electronic): 978-1603429870. ISBN

(printed): 1603429875.

[26] Shenoy ES, Macy E, Rowe T, Blumenthal KG. Evaluation and management of penicillin

allergy: a review. Jama. 2019;321(2):188-99. https://doi.org/10.1001/jama.2018.19283.

[27] Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harbor

perspectives in medicine. 2016;6(8). https://doi.org/10.1101/cshperspect.a025247.

[28] Lobanovska M, Pilla G. Focus: drug development: Penicillin’s discovery and antibiotic

resistance: lessons for the future? The Yale journal of biology and medicine. 2017;90(1):135-

145. PMID: 28356901.

[29] Huttner A, Bielicki J, Clements MN, Frimodt-Møller N, Muller AE, Paccaud J-P, et al. Oral

amoxicillin and amoxicillin–clavulanic acid: properties, indications and usage. Clinical

Microbiology and Infection. 2020;26(7):871-9. https://doi.org/10.1016/j.cmi.2019.11.028.

[30] Khan DA, Banerji A, Bernstein JA, Bilgicer B, Blumenthal K, Castells M, et al. Cephalosporin

allergy: current understanding and future challenges. The Journal of Allergy and Clinical

Immunology: In Practice. 2019;7(7) :2105-2114. https://doi.org/10.1016/j.jaip.2019.06.001.

[31] Fröhlich C, Sørum V, Tokuriki N, Johnsen PJ, Samuelsen Ø. Evolution of β-lactamasemediated cefiderocol resistance. Journal of Antimicrobial Chemotherapy. 2022; 77(9): 2429-

2436. https://doi.org/10.1093/jac/dkac221.

[32] Moguet C, Gonzalez C, Sallustrau A, Gelhaye S, Naas T, Simon S, et al. Detection of

expanded‐spectrum cephalosporin hydrolysis by lateral flow immunoassay. Microbial

Biotechnology. 2022; 15(2):603-612. https://doi.org/10.1111/1751-7915.13892.

[33] Fernandez J, Jimenez-Rodriguez TW, Blanca-Lopez N. Classifying cephalosporins: from

generation to cross-reactivity. Current Opinion in Allergy and Clinical Immunology. 2021; 21

(4): 346-354. https://doi.org/10.1097/aci.0000000000000755.

[34] El-Gamal MI, Brahim I, Hisham N, Aladdin R, Mohammed H, Bahaaeldin A. Recent updates

of carbapenem antibiotics. European journal of medicinal chemistry. 2017; 131: 185-195.

https://doi.org/10.1016/j.ejmech.2017.03.022.

[35] Potter RF, D’Souza AW, Dantas G. The rapid spread of carbapenem-resistant

Enterobacteriaceae. Drug Resistance Updates. 2016;29:30-46.

https://doi.org/10.1016/j.drup.2016.09.002.

[36] Doi Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clinical

Infectious Diseases. 2019;69(Supplement_7):S565-S75. https://doi.org/10.1093/cid/ciz830.

[37] Brink AJ. Epidemiology of carbapenem-resistant Gram-negative infections globally. Current

opinion in infectious diseases. 2019;32(6):609-16.

https://doi.org/10.1097/qco.0000000000000608.

[38] Fei Z, Wu Q, Li L, Jiang Q, Li B, Chen L, et al. New synthesis for the monobactam

antibiotic—LYS228. The Journal of Organic Chemistry. 2020; 85(11): 6854-6861.

https://doi.org/10.1021/acs.joc.9b01916.

[39] Emeraud C, Escaut L, Boucly A, Fortineau N, Bonnin RA, Naas T, et al. Aztreonam plus

clavulanate, tazobactam, or avibactam for treatment of infections caused by metallo-βlactamase-producing Gram-negative bacteria. Antimicrobial agents and chemotherapy.

2019;63(5):10.1128/aac. 00010-19. https://doi.org/10.1128/aac.00010-19.

[40] Fiel S. Aerosolized antibiotics in cystic fibrosis: an update. Expert Rev Respir Med 8: 305–

314. 2014. https://doi.org/10.1586/17476348.2014.896205.

[41] Lima LM, da Silva BNM, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a

medicinal chemistry perspective. European journal of medicinal chemistry. 2020;208:112829.

https://doi.org/10.1016/j.ejmech.2020.112829.

[42] Suarez C, Gudiol F. Beta-lactam antibiotics. Enfermedades infecciosas y microbiologia clinica.

2009;27(2):116-29. https://doi.org/10.1016/j.eimc.2008.12.001.

[43] Kotra LP, Mobashery S. Mechanistic and clinical aspects of beta-lactam antibiotics and betalactamases. Archivum immunologiae et therapiae experimentalis. 1999;47(4):211-216. PMID:

10483868.

[44] Malouin F, Bryan L. Modification of penicillin-binding proteins as mechanisms of beta-lactam

resistance. Antimicrobial agents and chemotherapy. 1986; 30(1): 1-5.

https://doi.org/10.1128/aac.30.1.1.

[45] Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and β-lactam resistance.

FEMS microbiology reviews. 2008;32(2):361-385. https://doi.org/10.1111/j.1574-

6976.2007.00095.x.

[46] Shapiro AB. Investigation of β-lactam antibacterial drugs, β-lactamases, and penicillin-binding

proteins with fluorescence polarization and anisotropy: a review. Methods and Applications in

Fluorescence. 2016; 4(2): 024002. https://doi.org/10.1088/2050-6120/4/2/024002.

[47] Donowitz GR, Mandell GL. Beta-lactam antibiotics. New England Journal of Medicine. 1988;

318(7): 419-426. https://doi.org/10.1056/nejm198802183180706.

[48] Barber M. Methicillin-resistant staphylococci. Journal of clinical pathology. 1961; 14(4): 385.

https://doi.org/10.1136/jcp.14.4.385.

[49] Brumfitt W, Hamilton-Miller J. Methicillin-resistant Staphylococcus aureus. New England

Journal of Medicine. 1989;320(18):1188-1196.

https://doi.org/10.1056/nejm198905043201806.

[50] Firth N, Jensen SO, Kwong SM, Skurray RA, Ramsay JP. Staphylococcal plasmids,

transposable and integrative elements. Microbiology spectrum. 2018; 6(6).

https://doi.org/10.1128/microbiolspec.gpp3-0030-2018.

[51] Zygmunt DJ, Stratton CW, Kernodle DS. Characterization of four beta-lactamases produced by

Staphylococcus aureus. Antimicrobial agents and chemotherapy. 1992;36(2):440-5.

https://doi.org/10.1128/aac.36.2.440.

[52] Knowles JR. Penicillin resistance: the chemistry of. beta.-lactamase inhibition. Accounts of

Chemical Research. 1985;18(4):97-104. https://doi.org/10.1021/ar00112a001.

[53] Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and

its correlation with molecular structure. Antimicrobial agents and chemotherapy. 1995; 39(6):

1211-33. https://doi.org/10.1128/aac.39.6.1211.

[54] Maddux MS. Effects of ß‐Lactamase‐Mediated Antimicrobial Resistance: The Role of ß‐

Lactamase Inhibitors. Pharmacotherapy: The Journal of Human Pharmacology and Drug

Therapy. 1991;11(2P2):40S-50S. PMID: 2041831.

[55] Livermore DM, Brown DF. Detection of β-lactamase-mediated resistance. Journal of

antimicrobial chemotherapy. 2001;48(suppl_1):59-64.

https://doi.org/10.1093/jac/48.suppl_1.59.

[56] Clarke SR, Dyke KG. Studies of the operator region of the Staphylococcus aureus β-lactamase

operon. Journal of Antimicrobial Chemotherapy. 2001;47(4):377-89.

https://doi.org/10.1093/jac/47.4.377.

[57] PA W. Clinical and Laboratory Standards Institute: Performance standards for antimicrobial

susceptibility testing: 20th informational supplement. CLSI document M100-S20. 2010.

https://cir.nii.ac.jp/crid/1572261550694185984.

[58] Wu P-J, Shannon K, Phillips I. Mechanisms of hyperproduction of TEM-1 β-lactamase by

clinical isolates of Escherichia coli. Journal of Antimicrobial Chemotherapy. 1995;36(6):927-

39. https://doi.org/10.1093/jac/36.6.927.

[59] Lee N, Yuen K-Y, Kumana CR. Clinical role of β-lactam/β-lactamase inhibitor combinations.

Drugs. 2003; 63: 1511-24. https://doi.org/10.2165/00003495-200363140-00006.

[60] Tortora GJ, Funke BR, Case CL. Microbiology: an introduction: San Fransisco, USA, Pearson

Benjamin Cummings San Francisco, 2018. ISBN (Electronic): 978-0134605180. ISBN

(Printed): 0134605187.

[61] Kobayashi N, Wu H, Kojima K, Taniguchi K, Urasawa S, Uehara N, et al. Detection of mecA,

femA, and femB genes in clinical strains of staphylococci using polymerase chain reaction.

Epidemiology & Infection. 1994;113(2):259-66. https://doi.org/10.1017/s0950268800051682.

[62] Ray C & Ryan K.J, Sherris Medical Microbiology: An Introduction to Infectiuos Disease,

Chicago, USA, McGraw Hill Medical, 2003. ISBN (Electronic): 978-0838585290. ISBN

(Printed): 0838585299.

[63] Daum RS, Ito T, Hiramatsu K, Hussain F, Mongkolrattanothai K, Jamklang M, et al. A novel

methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus

aureus isolates of diverse genetic backgrounds. The Journal of infectious diseases.

2002;186(9):1344-7. https://doi.org/10.1086/344326.

[64] Fey P, Said-Salim B, Rupp M, Hinrichs S, Boxrud D, Davis C, Kreiswirth BN, Schlievert PM.

Comparative molecular analysis of community-or hospital-acquired methicillin-resistant

Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2003;47(1):196-203.

https://doi.org/10.1128/aac.47.1.196-203.2003.

Downloads

Published

2024-01-15

Issue

Section

Articles

How to Cite

Issa, K. D., & Muhsin, M. D. (2024). Beta–Lactam Drug Resistance Pattern in Staphylococcus aureus Isolates: A Review. EURASIAN JOURNAL OF SCIENCE AND ENGINEERING, 9(3), 141-153. https://doi.org/10.23918/eajse.v9i3p13

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.