1. Home
  2. 2024-V10-I2
  3. Genetic Selection Pressure on TLR9 Gene Increases Individual Susceptibility to Systemic Inflammatory Disease: A Case Study of Kano State Population
Statistics

Article Views: 75

PDF Downloads: 26

  • Date of Publication : 2024-04-24 Article Type : Research Article
  • Genetic Selection Pressure on TLR9 Gene Increases Individual Susceptibility to Systemic Inflammatory Disease: A Case Study of Kano State Population

    Yusuf Jibril Habib ¹* and  Mohammed Sani Jaafaru ¹

    Affiliation

    ¹ Department of Medical Analysis, Tishk International University, Erbil-Iraq
    *Corresponding Author


    ORCID :

    Yusuf Jibril: https://orcid.org/0000-0003-3001-7586, Mohammed Sani: https://orcid.org/0000-0002-6635-4931


    DOI :

    https://doi.org/10.23918/eajse.v10i2p1


    Article History

    Received: 2023-12-25

    Revised: 2024-03-13

    Accepted: 2024-04-04

    Abstract

    Toll-like receptor 9 (TLR9) may recognize and generate an immunological response to DNA double-strand; therefore, its link with experimental and serological lupus symptoms must be investigated. Genetic data on the normal frequencies of the TLR9 (rs187084) polymorphism may make it difficult to choose an adequate sample size for case-control association studies. This study investigated how TLR9 (rs187084) polymorphism is typically distributed among the people living in Kano, Nigerians. TLR9 (rs187084) polymorphism was examined in a sample of 315 individuals using the polylmerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The mutant allele was more common (67%) and gender-independent. The gradual incidence of changed alleles in both identities suggests the population was chosen to survive tuberculosis (TB) and malaria. Though increased TLR9 expression is protective against infections, it might likewise play a part in the development of inflammatory disorders. The high frequency of TLR9 (rs187084) over-expression in Kano State residents may be the result of genetic adaptation to the state's common infectious and parasitic diseases. This is thought to be the outcome of interactions among genetic factors and the terrain. Systemic lupus erythematosus (SLE) and other autoimmune disorders have been linked to this genetic plasticity. Sample sizes for future case-control studies can be determined using the current data. However, to further understand the link between the TLR9-rs187084 variation and the risk of systemic inflammatory diseases, functional investigations might be undertaken.

    Keywords :

    TLR9 Gene; Inflammatory disease; Polymorphism, Population; PCR-RFLP


    [1]    Habib YJ, Zhang Z. The involvement of crustaceans toll-like receptors in pathogen recognition. Fish & shellfish immunology, 2020. 102: p. 169-176. https://doi.org/10.1016/j.fsi.2020.04.035

    Google Scholar
    [2]    El-Zayat SR, Sibaii H, Mannaa FA.  Toll-like receptors activation, signaling, and targeting: an overview. Bulletin of the National Research Centre, 2019. 43(1): p. 1-12.  https://doi.org/10.1186/s42269-019-0227-2

    Google Scholar 
    [3]    Nie L, Cai S-Y, Shao J-Z, Chen J.  Toll-like receptors, associated biological roles, and signaling networks in non-mammals. Frontiers in immunology, 2018. 9: p. 1523. https://doi.org/10.3389%2Ffimmu.2018.01523

    Google Scholar
    [4]    Behzadi P, García-Perdomo HA, Karpiński TM. Toll-like receptors: general molecular and structural biology. Journal of Immunology Research, 2021. 2021: p. 1-21. https://doi.org/10.1155/2021/9914854.

    Google Scholar 
    [5]    Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell, 2020. 180(6): p. 1044-1066. https://doi.org/10.1016/j.cell.2020.02.041.

    Google Scholar 
    [6]    Yusuf J, Kaliyaperumal D, Jayaraman M, Ramanathan G, Devaraju P. Genetic selection pressure in TLR9 gene may enforce risk for SLE in Indian Tamils. Lupus, 2017. 26(3): p. 307-310. https://doi.org/10.1177/0961203316659151.

    Google Scholar 
    [7]    Kang JY, Lee J-O. Structural biology of the Toll-like receptor family. Annual review of biochemistry, 2011. 80: p. 917-941. https://doi.org/10.1146/annurev-biochem-052909-141507

    Google Scholar 
    [8]    Sameer AS, Nissar S. Toll-like receptors (TLRs): structure, functions, signaling, and role of their polymorphisms in colorectal cancer susceptibility. BioMed Research International, 2021. 2021.  https://doi.org/10.1155/2021/1157023

    Google Scholar 
    [9]    Thada S, Valluri V, Gaddam S. Influence of Toll‐like receptor gene polymorphisms to tuberculosis susceptibility in humans. Scandinavian journal of immunology, 2013. 78(3): p. 221-229. https://doi.org/10.1111/sji.12066.

    Google Scholar 
    [10]    Trejo-De La O A, Hernández-Sancén P, Maldonado-Bernal C.  Relevance of single-nucleotide polymorphisms in human TLR genes to infectious and inflammatory diseases and cancer. Genes & Immunity, 2014. 15(4): p. 199-209. https://doi.org/10.1038/gene.2014.10.

    Google Scholar 
    [11]    Lazarus R, Klimecki WT, Raby BA, Vercelli D, Palmer LJ, Kwiatkowski DJ. Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR9): frequencies, pairwise linkage disequilibrium, and haplotypes in three US ethnic groups and exploratory case–control disease association studies. Genomics, 2003. 81(1): p. 85-91. https://doi.org/10.1016/S0888-7543(02)00022-8.

    Google Scholar 
    [12]    Noguchi E, Nishimura F, Fukai H, Kim J, Ichikawa K, Shibasaki M.  An association study of asthma and total serum immunoglobin E levels for Toll‐like receptor polymorphisms in a Japanese population. Clinical & Experimental Allergy, 2004. 34(2): p. 177-183.https://doi.org/10.1111/j.1365-2222.2004.01839.x.

    Google Scholar 
    [13]    Berghöfer B, Frommer T, König I, Ziegler A, Chakraborty T, Bein G. Common human Toll‐like receptor 9 polymorphisms and haplotypes: association with atopy and functional relevance. Clinical & Experimental Allergy, 2005. 35(9): p. 1147-1154. https://doi.org/10.1111/j.1365-2222.2005.02325.x.

    Google Scholar
    [14]    Hamann L, Glaeser C, Hamprecht A, Gross M, Gomma A, Schumann RR. Toll-like receptor (TLR)-9 promotor polymorphisms and atherosclerosis. Clinica Chimica Acta, 2006. 364(1-2): p. 303-307. https://doi.org/10.1016/j.cca.2005.07.017.

    Google Scholar
    [15]    Tao K, Fujii M, Tsukumo S-i, Maekawa Y, Kishihara K, Kimoto Y. Genetic variations of Toll-like receptor 9 predispose to systemic lupus erythematosus in Japanese population. Annals of the rheumatic diseases, 2007. https://doi.org/10.1136/ard.2006.065961.

    Google Scholar 
    [16]    De Jager PL, Richardson A, Vyse TJ, Rioux JD. Genetic variation in toll‐like receptor 9 and susceptibility to systemic lupus erythematosus. Arthritis & Rheumatism, 2006. 54(4): p. 1279-1282. https://doi.org/10.1002/art.21755.

    Google Scholar 
    [17]    Hur JW, Shin H, Park B, Kim L, Kim SY, Bae SC.  Association study of Toll‐like receptor 9 gene polymorphism in Korean patients with systemic lupus erythematosus. Tissue Antigens, 2005. 65(3): p. 266-270. https://doi.org/10.1111/j.1399-0039.2005.00374.x.

    Google Scholar 
    [18]    Satsangi J, Parkes M, Louis E, Hashimoto L, Kato N, Welsh K. Two stage genome–wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nature genetics, 1996. 14(2): p. 199-202. https://doi.org/10.1038/ng1096-199.

    Google Scholar 
    [19]    Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut, 2004. 53(7): p. 987. https://doi.org/10.1136/gut.2003.030205.

    Google Scholar 
    [20]    Lammers K, Ouburg S, Morre S, Crusius J, Gionchetti P, Rizzello F. Combined carriership of TLR9-1237C and CD14-260T alleles enhances the risk of developing chronic relapsing pouchitis. World Journal of Gastroenterology, 2005. 11(46): p. 7323. https://doi.org/10.3748/wjg.v11.i46.7323.

    Google Scholar 
    [21]    Kikuchi K, Lian Z-X, Kimura Y, Selmi C, Yang G-X, Gordon SC. Genetic polymorphisms of toll-like receptor 9 influence the immune response to CpG and contribute to hyper-IgM in primary biliary cirrhosis. Journal of autoimmunity, 2005. 24(4): p. 347-352. https://doi.org/10.1016/j.jaut.2005.03.002.

    Google Scholar 
    [22]    Mukherjee S, Huda S, Sinha Babu SP.  Toll‐like receptor polymorphism in host immune response to infectious diseases: A review. Scandinavian journal of immunology, 2019. 90(1): p. e12771. https://doi.org/10.1111/sji.12771.

    Google Scholar 
    [23]    Kutikhin, A.G. Association of polymorphisms in TLR genes and in genes of the Toll-like receptor signaling pathway with cancer risk. Human immunology, 2011. 72(11): p. 1095-1116. https://doi.org/10.1016/j.humimm.2011.07.307.

    Google Scholar 
    [24]    Cui J, Chen Y, Wang HY, Wang R-F. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Human vaccines & immunotherapeutics, 2014. 10(11): p. 3270-3285. https://doi.org/10.4161/21645515.2014.979640.

    Google Scholar 
    [25]    Skevaki C, Pararas M, Kostelidou K, Tsakris A, Routsias J. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases. Clinical & Experimental Immunology, 2015. 180(2): p. 165-177. https://doi.org/10.1111/cei.12578

    Google Scholar 
    [26]    Selvaraj P, Harishankar M, Singh B, Jawahar M, Banurekha V. Toll-like receptor and TIRAP gene polymorphisms in pulmonary tuberculosis patients of South India. Tuberculosis, 2010. 90(5): p. 306-310. https://doi.org/10.1016/j.tube.2010.08.001

    Google Scholar 
    [27]    Christensen SR, Kashgarian M, Alexopoulou L, Flavell RA, Akira S, Shlomchik MJ.  Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. The Journal of experimental medicine, 2005. 202(2): p. 321-331. 
    https://doi.org/10.1084/jem.20050338.

    Google Scholar 
    [28]    Omar AH, Yasunami M, Yamazaki A, Shibata H, Ofori MF, Akanmori BD. Toll-like receptor 9 (TLR9) polymorphism associated with symptomatic malaria: a cohort study. Malaria journal, 2012. 11: p. 1-10. https://doi.org/10.1186/1475-2875-11-168.

    Google Scholar 
    [29]    Zhang L, Qin H, Guan X, Zhang K, Liu Z. The TLR9 gene polymorphisms and the risk of cancer: evidence from a meta-analysis. PloS one, 2013. 8(8): p. e71785.M https://doi.org/10.1371/journal.pone.0071785

    Google Scholar 
    [30]    Ramachandran R, Sharma V, Rathi M, Yadav A, Sharma A, Kohli H. Association between-1486 T> C and+ 1174 G> A single nucleotide polymorphisms in TLR9 gene and severity of lupus nephritis. Indian journal of nephrology, 2012. 22(2): p. 125. https://doi.org/10.4103/0971-4065.97133.

    Google Scholar 
    [31]    Tao K, Fujii M, Tsukumo S-i, Maekawa Y, Kishihara K, Kimoto Y. Genetic variations of Toll-like receptor 9 predispose to systemic lupus erythematosus in Japanese population. Annals of the rheumatic diseases, 2007. 66(7): p. 905-909. https://doi.org/10.1136/ard.2006.065961.

    Google Scholar 
    [32]    Fumagalli M, Sironi M.  Human genome variability, natural selection and infectious diseases. Current opinion in immunology, 2014. 30: p. 9-16. https://doi.org/10.1016/j.coi.2014.05.001.

    Google Shcolar 
    [33]    Zhang J, Zhu Q, Meng F, Lei H, Zhao Y. Association study of TLR-9 polymorphisms and systemic lupus erythematosus in northern Chinese Han population. Gene, 2014. 533(1): p. 385-388. https://doi.org/10.1016/j.gene.2013.08.051.

    Google Scholar 
    [34]    Rupasree Y, Naushad S, Rajasekhar L, Uma A, Kutala V. Association of TLR4 (D299G, T399I), TLR9− 1486T> C, TIRAP S180L and TNF-α promoter (− 1031,− 863,− 857) polymorphisms with risk for systemic lupus erythematosus among South Indians. Lupus, 2015. 24(1): p. 50-57. https://doi.org/10.1177/0961203314549792.

    Google Scholar 
    [35]    Devaraju P, Gulati R, Antony PT, Mithun C, Negi VS.  Susceptibility to SLE in South Indian Tamils may be influenced by genetic selection pressure on TLR2 and TLR9 genes. Molecular immunology, 2015. 64(1): p. 123-126. https://doi.org/10.1016/j.molimm.2014.11.005.

    Google Scholar 
    [36]    Obermoser G, Pascual V.  The interferon-α signature of systemic lupus erythematosus. Lupus, 2010. 19(9): p. 1012-1019. https://doi.org/10.1177/0961203310371161.

    Google Scholar 
    [37]    Lenert, P.S., Targeting Toll-like receptor signaling in plasmacytoid dendritic cells and autoreactive B cells as a therapy for lupus. Arthritis research & therapy, 2006. 8: p. 1-11. https://doi.org/10.1186/ar1888.
    Google Scholar 



    @article{habib,yusufjibrilandjaafaru,mohammedsani2024,
     author = {Habib, Yusuf Jibril and Jaafaru, Mohammed Sani},
     title = {Genetic Selection Pressure on TLR9 Gene Increases Individual Susceptibility to Systemic Inflammatory Disease: A Case Study of Kano State Population},
     journal = {Eurasian J. Sci. Eng},
     volume = {10},
     number = {2},
     pages = {1-15},
     year = {2024}
    }
    Copy

    Habib, Y. S., & Jaafaru, M. S. (2024). Genetic Selection Pressure on TLR9 Gene Increases Individual Susceptibility to Systemic Inflammatory Disease: A Case Study of Kano State Population. Eurasian J. Sci. Eng, 10(2),1-15.

    Copy

    Habib, YS, and Jaafaru MS. "Genetic Selection Pressure on TLR9 Gene Increases Individual Susceptibility to Systemic Inflammatory Disease: A Case Study of Kano State Population." Eurasian J. Sci. Eng, 10.2, (2024), pp.1-15.

    Copy

    Habib, Y. S., & Jaafaru, M. S. (2024) "Genetic Selection Pressure on TLR9 Gene Increases Individual Susceptibility to Systemic Inflammatory Disease: A Case Study of Kano State Population", Eurasian J. Sci. Eng, 10(2), pp.1-15.

    Copy

    Habib YS, Jaafaru MS. Genetic Selection Pressure on TLR9 Gene Increases Individual Susceptibility to Systemic Inflammatory Disease: A Case Study of Kano State Population. Eurasian J. Sci. Eng. 2024; 10(2):1-15.

    Copy

    Under Development

    Under Development

    Under Development

  • Genetic Selection Pressure on TLR9 Gene Increases Individual Susceptibility to Systemic Inflammatory Disease: A Case Study of Kano State Population