1. Home
  2. 2023-V9-I3
  3. Beta–Lactam Drug Resistance Pattern in Staphylococcus aureus Isolates: A Review
Statistics

Article Views: 210

PDF Downloads: 73

  • Date of Publication : 2024-01-15 Article Type : Review Article
  • Beta–Lactam Drug Resistance Pattern in Staphylococcus aureus Isolates: A Review

    Kovan Dilawer Issa ¹*, and  Mohammed Dlshad Muhsin ²

    Affiliation

    ¹ Medical Analysis Department, Applied Science Faculty, Tishk International University, Erbil, Kurdistan Region – Iraq
    ² Department of Basic Sciences, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region – Iraq
    *Corresponding Author


    ORCID :

    Kovan Dilawer: https://orcid.org/0000-0003-2860-0246Mohammed Dlshad: https://orcid.org/0009-0009-8031-1602


    DOI :

    https://doi.org/10.23918/eajse.v9i3p13


    Article History

    Received: 2023-08-24

    Revised: 2024-01-08

    Accepted: 2024-01-14

    Abstract

    Methicillin Resistance Staphylococcus aureus (MRSA) is a serious human disease also considered as a chronological developing zoonotic pathogen of common health and in term of veterinary concern. Pyoginic endocariditis, otitis media, food poisoning, pyogenic infection of the soft tissues and the skin, suppurative pneumonia, and osteomyelitis all are prevalent infection of MRSA in people.

    MRSA can induce botryomycosis and infected contamination in horses; severe mastitis and pyogenic infection in cattle and ewes with marked toxemia; pustular dermatitis in dogs and cats as well as food poisoning; greasy pig disease in pigs which also called exudative epidermatitis.

    A number of multilevel random-effects models were fitted to estimate mean occurrence rates of antibiotic-resistant S. aureus, and subgroup analyses were performed to compare antibiotic resistance rates of S. aureus throughout the years and among the methods to determine the antimicrobial susceptibility.

    This review provides a comprehensive illustration about MRSA including background, epidemiology, resistance, and others. On other hands, different types of antibiotics have been mentioned in which they have been utilized against S. aureus and their mechanism of action is explained as well. Therefore, this review is helpful by its simpleness and comprehensive contents.

    Keywords :

    Antibiotics; β-Lactamase; Methicillin; MRSA; Penicillinase; Staphylococcus aureus.


    [1]    Jenul C, Horswill AR. Regulation of Staphylococcus aureus virulence. Microbiology spectrum. 2019;7(2):7.2. 29. https://doi.org/10.1128/microbiolspec.gpp3-0031-2018

    Google Scholar 
    [2]    Adams M, Moss M, McClure P. Food Microbiology, London, UK, Royal Society of Chemistry, 1995: 121-122. ISBN (Printed): 1849739609.


    [3]    Cheung GY, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12(1):547-69. https://doi.org/10.1080/21505594.2021.1878688

    Google Scholar 
    [4]    Rasigade J-P, Dumitrescu O, Lina G. New epidemiology of Staphylococcus aureus infections. Clinical Microbiology and Infection. 2014;20(7):587-8. https://doi.org/10.1111/1469-0691.12718

    Google Scholar 
    [5]    Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler Jr VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical microbiology reviews. 2015;28(3):603-61. https://doi.org/10.1128/cmr.00134-14

    Google Scholar 
    [6]    Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H, et al. Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. International journal of antimicrobial agents. 2012; 39(4) :273-82. https://doi.org/10.1016/j.ijantimicag.2011.09.030.  

    Google Scholar 
    [7]    Rasmi AH, Ahmed EF, Darwish AMA, Gad GFM. Virulence genes distributed among Staphylococcus aureus causing wound infections and their correlation to antibiotic resistance. BMC Infectious Diseases. 2022;22(1):652. https://doi.org/10.1186/s12879-022-07624-8.  

    Google Scholar 
    [8]    Vestergaard M, Frees D, Ingmer H. Antibiotic resistance and the MRSA problem. Microbiology spectrum. 2019; 7(2):10. https://doi.org/10.1128/microbiolspec.gpp3-0057-2018

    Google Scholar 
    [9]    Algammal AM, Hetta HF, Elkelish A, Alkhalifah DHH, Hozzein WN, Batiha GE-S, et al. Methicillin-Resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infection and Drug Resistance. 2020:3255-65. https://doi.org/10.2147/idr.s272733

    Google Scholar 
    [10]    Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus. Annual review of biochemistry. 2015;84:577-601. https://doi.org/10.1146/annurev-biochem-060614-034516

    Google Scholar 
    [11]    Kitti T, Boonyonying K, Sitthisak S. Prevalence of methicillin-resistant Staphylococcus aureus among university students in Thailand. Southeast Asian Journal of Tropical Medicineand Public Health. 2011;42(6):1498. PMID: 22299421.

    Google Scholar 
    [12]    Prenafeta A, Sitjà M, Holmes MA, Paterson GK. Biofilm production characterization of mecA and mecC methicillin-resistant Staphylococcus aureus isolated from bovine milk in Great Britain. Journal of Dairy Science. 2014;97(8):4838-41. https://doi.org/10.3168/jds.2014-7986

    Google Scholar 
    [13]    Gajdács M, Zsoldiné Urbán E. Epidemiology and resistance trends of Staphylococcus aureus isolated from vaginal samples: a 10-year retrospective study in Hungary. Acta Dermatovenerologica Alpina, Pannonica et Adriatica. 2019;28(4):143-7. PMID: 31855266.

    Google Scholar 
    [14]    Azeez-Akande O. Global trend of methicillin-resistant Staphlococcus aureus and emerging challenges for control. African Journal of Clinical and Experimental Microbiology. 2010;11(3): 150-158. https://doi.org/10.4314/ajcem.v11i3.57771

    Google Scholar 
    [15]    Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed research international. 2014;2014: 1-9. https://doi.org/10.1155/2014/827965.  

    Google Scholar 
    [16]    Heaton CJ, Gerbig GR, Sensius LD, Patel V, Smith TC. Staphylococcus aureus epidemiology in wildlife: A systematic review. Antibiotics. 2020;9(2):89. https://doi.org/10.3390/antibiotics9020089

    Google Scholar 
    [17]    Shimizu M, Mihara T, Ohara J, Inoue K, Kinoshita M, Sawa T. Relationship between mortality and molecular epidemiology of methicillin-resistant Staphylococcus aureus bacteremia. Plos one. 2022;17(7):e0271115. https://doi.org/10.1371/journal.pone.0271115

    Google Scholar 
    [18]    Haag AF, Fitzgerald JR, Penadés JR. Staphylococcus aureus in Animals. Microbiology Spectrum. 2019;7(3):1-19. https://doi.org/10.1128/microbiolspec.gpp3-0060-2019

    Google Scholar 
    [19]    Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, et al. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proceedings of the National Academy of Sciences. 2004; 101 (26): 9786-9791. https://doi.org/10.1073/pnas.0402521101.

    Google Scholar 
    [20]    Breurec S, Zriouil S, Fall C, Boisier P, Brisse S, Djibo S, et al. Epidemiology of methicillin-resistant Staphylococcus aureus lineages in five major African towns: emergence and spread of atypical clones. Clinical Microbiology and Infection. 2011;17(2):160-5. https://doi.org/10.1111/j.1469-0691.2010.03219.x.

    Google Scholar 
    [21]    Stegger M, Wirth T, Andersen PS, Skov RL, De Grassi A, Simões PM, et al. Origin and evolution of European community-acquired methicillin-resistant Staphylococcus aureus. MBio. 2014; 5 (5). https://doi.org/10.1128/mbio.01044-14.  

    Google Scholar 
    [22]    Abdulgader SM, Shittu AO, Nicol MP, Kaba M. Molecular epidemiology of Methicillin-resistant Staphylococcus aureus in Africa: a systematic review. Frontiers in microbiology. 2015; 6:348. https://doi.org/10.3389/fmicb.2015.00348.  

    Google Scholar 
    [23]    Grema HA, Geidam YA, Gadzama GB, Ameh JA, Suleiman A. Methicillin resistant Staphylococcus aureus (MRSA): a review. Adv Anim Vet Sci. 2015;3(2):79-98. http://dx.doi.org/10.14737/journal.aavs/2015/3.2.79.98.

    Google Scholar 
    [24]    Fleming A. Penicillin. British medical journal. 1941; 2(4210): 386. https://doi.org/10.1136/bmj.2.4519.242

    Google Scholar 
    [25]    Buhner SH. Herbal antibiotics: natural alternatives for treating drug-resistant bacteria. New York, USA: Storey Publishing, LLC, 2012. ISBN (electronic): 978-1603429870. ISBN (printed): 1603429875.

    Google Scholar 
    [26]    Shenoy ES, Macy E, Rowe T, Blumenthal KG. Evaluation and management of penicillin allergy: a review. Jama. 2019;321(2):188-99. https://doi.org/10.1001/jama.2018.19283.  

    Google Scholar 
    [27]    Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harbor perspectives in medicine. 2016;6(8). https://doi.org/10.1101/cshperspect.a025247

    Google Scholar 
    [28]    Lobanovska M, Pilla G. Focus: drug development: Penicillin’s discovery and antibiotic resistance: lessons for the future? The Yale journal of biology and medicine. 2017;90(1):135-145. PMID: 28356901.

    Google Scholar 
    [29]    Huttner A, Bielicki J, Clements MN, Frimodt-Møller N, Muller AE, Paccaud J-P, et al. Oral amoxicillin and amoxicillin–clavulanic acid: properties, indications and usage. Clinical Microbiology and Infection. 2020;26(7):871-9. https://doi.org/10.1016/j.cmi.2019.11.028

    Google Scholar 
    [30]    Khan DA, Banerji A, Bernstein JA, Bilgicer B, Blumenthal K, Castells M, et al. Cephalosporin allergy: current understanding and future challenges. The Journal of Allergy and Clinical Immunology: In Practice. 2019;7(7) :2105-2114. https://doi.org/10.1016/j.jaip.2019.06.001.  

    Google Scholar 
    [31]    Fröhlich C, Sørum V, Tokuriki N, Johnsen PJ, Samuelsen Ø. Evolution of β-lactamase-mediated cefiderocol resistance. Journal of Antimicrobial Chemotherapy. 2022; 77(9): 2429-2436. https://doi.org/10.1093/jac/dkac221.  

    Google Scholar 
    [32]    Moguet C, Gonzalez C, Sallustrau A, Gelhaye S, Naas T, Simon S, et al. Detection of expanded‐spectrum cephalosporin hydrolysis by lateral flow immunoassay. Microbial Biotechnology. 2022; 15(2):603-612. https://doi.org/10.1111/1751-7915.13892

    Google Scholar 
    [33]    Fernandez J, Jimenez-Rodriguez TW, Blanca-Lopez N. Classifying cephalosporins: from generation to cross-reactivity. Current Opinion in Allergy and Clinical Immunology. 2021; 21 (4): 346-354. https://doi.org/10.1097/aci.0000000000000755.  

    Google Scholar 
    [34]    El-Gamal MI, Brahim I, Hisham N, Aladdin R, Mohammed H, Bahaaeldin A. Recent updates of carbapenem antibiotics. European journal of medicinal chemistry. 2017; 131: 185-195. https://doi.org/10.1016/j.ejmech.2017.03.022

    Google Scholar 
    [35]    Potter RF, D’Souza AW, Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resistance Updates. 2016;29:30-46. https://doi.org/10.1016/j.drup.2016.09.002.  

    Google Scholar 
    [36]    Doi Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clinical Infectious Diseases. 2019;69(Supplement_7):S565-S75. https://doi.org/10.1093/cid/ciz830


    [37]    Brink AJ. Epidemiology of carbapenem-resistant Gram-negative infections globally. Current opinion in infectious diseases. 2019;32(6):609-16. https://doi.org/10.1097/qco.0000000000000608

    Google Scholar 
    [38]    Fei Z, Wu Q, Li L, Jiang Q, Li B, Chen L, et al. New synthesis for the monobactam antibiotic—LYS228. The Journal of Organic Chemistry. 2020; 85(11): 6854-6861. https://doi.org/10.1021/acs.joc.9b01916

    Google Scholar 
    [39]    Emeraud C, Escaut L, Boucly A, Fortineau N, Bonnin RA, Naas T, et al. Aztreonam plus clavulanate, tazobactam, or avibactam for treatment of infections caused by metallo-β-lactamase-producing Gram-negative bacteria. Antimicrobial agents and chemotherapy. 2019;63(5):10.1128/aac. 00010-19. https://doi.org/10.1128/aac.00010-19

    Google Scholar 
    [40]    Fiel S. Aerosolized antibiotics in cystic fibrosis: an update. Expert Rev Respir Med 8: 305–314. 2014. https://doi.org/10.1586/17476348.2014.896205

    Google Scholar 
    [41]    Lima LM, da Silva BNM, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a medicinal chemistry perspective. European journal of medicinal chemistry. 2020;208:112829. https://doi.org/10.1016/j.ejmech.2020.112829

    Google Scholar 
    [42]    Suarez C, Gudiol F. Beta-lactam antibiotics. Enfermedades infecciosas y microbiologia clinica. 2009;27(2):116-29. https://doi.org/10.1016/j.eimc.2008.12.001

    Google Scholar 
    [43]    Kotra LP, Mobashery S. Mechanistic and clinical aspects of beta-lactam antibiotics and beta-lactamases. Archivum immunologiae et therapiae experimentalis. 1999;47(4):211-216. PMID: 10483868.

    Google Scholar 
    [44]    Malouin F, Bryan L. Modification of penicillin-binding proteins as mechanisms of beta-lactam resistance. Antimicrobial agents and chemotherapy. 1986; 30(1): 1-5. https://doi.org/10.1128/aac.30.1.1

    Google Scholar 
    [45]    Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and β-lactam resistance. FEMS microbiology reviews. 2008;32(2):361-385. https://doi.org/10.1111/j.1574-6976.2007.00095.x.  

    Google Scholar 
    [46]    Shapiro AB. Investigation of β-lactam antibacterial drugs, β-lactamases, and penicillin-binding proteins with fluorescence polarization and anisotropy: a review. Methods and Applications in Fluorescence. 2016; 4(2): 024002. https://doi.org/10.1088/2050-6120/4/2/024002

    Google Scholar 
    [47]    Donowitz GR, Mandell GL. Beta-lactam antibiotics. New England Journal of Medicine. 1988; 318(7): 419-426. https://doi.org/10.1056/nejm198802183180706

    Google Scholar 
    [48]    Barber M. Methicillin-resistant staphylococci. Journal of clinical pathology. 1961; 14(4): 385. https://doi.org/10.1136/jcp.14.4.385

    Google Scholar 
    [49]    Brumfitt W, Hamilton-Miller J. Methicillin-resistant Staphylococcus aureus. New England Journal of Medicine. 1989;320(18):1188-1196. https://doi.org/10.1056/nejm198905043201806

    Google Scholar 
    [50]    Firth N, Jensen SO, Kwong SM, Skurray RA, Ramsay JP. Staphylococcal plasmids, transposable and integrative elements. Microbiology spectrum. 2018; 6(6). https://doi.org/10.1128/microbiolspec.gpp3-0030-2018

    Google Scholar 
    [51]    Zygmunt DJ, Stratton CW, Kernodle DS. Characterization of four beta-lactamases produced by Staphylococcus aureus. Antimicrobial agents and chemotherapy. 1992;36(2):440-5. https://doi.org/10.1128/aac.36.2.440

    Google Scholar 
    [52]    Knowles JR. Penicillin resistance: the chemistry of. beta.-lactamase inhibition. Accounts of Chemical Research. 1985;18(4):97-104. https://doi.org/10.1021/ar00112a001

    Google Scholar 
    [53]    Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrobial agents and chemotherapy. 1995; 39(6): 1211-33. https://doi.org/10.1128/aac.39.6.1211

    Google Scholar 
    [54]    Maddux MS. Effects of ß‐Lactamase‐Mediated Antimicrobial Resistance: The Role of ß‐Lactamase Inhibitors. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 1991;11(2P2):40S-50S. PMID: 2041831.

    Google Scholar 
    [55]    Livermore DM, Brown DF. Detection of β-lactamase-mediated resistance. Journal of antimicrobial chemotherapy. 2001;48(suppl_1):59-64. https://doi.org/10.1093/jac/48.suppl_1.59


    [56]    Clarke SR, Dyke KG. Studies of the operator region of the Staphylococcus aureus β-lactamase operon. Journal of Antimicrobial Chemotherapy. 2001;47(4):377-89. https://doi.org/10.1093/jac/47.4.377

    Google Scholar 
    [57]    PA W. Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI document M100-S20. 2010. https://cir.nii.ac.jp/crid/1572261550694185984


    [58]    Wu P-J, Shannon K, Phillips I. Mechanisms of hyperproduction of TEM-1 β-lactamase by clinical isolates of Escherichia coli. Journal of Antimicrobial Chemotherapy. 1995;36(6):927-39. https://doi.org/10.1093/jac/36.6.927

    Google Scholar 
    [59]    Lee N, Yuen K-Y, Kumana CR. Clinical role of β-lactam/β-lactamase inhibitor combinations. Drugs. 2003; 63: 1511-24. https://doi.org/10.2165/00003495-200363140-00006

    Google Scholar 
    [60]    Tortora GJ, Funke BR, Case CL. Microbiology: an introduction: San Fransisco, USA, Pearson Benjamin Cummings San Francisco, 2018. ISBN (Electronic): 978-0134605180. ISBN (Printed): 0134605187.


    [61]    Kobayashi N, Wu H, Kojima K, Taniguchi K, Urasawa S, Uehara N, et al. Detection of mecA, femA, and femB genes in clinical strains of staphylococci using polymerase chain reaction. Epidemiology & Infection. 1994;113(2):259-66. https://doi.org/10.1017/s0950268800051682

    Google Scholar 
    [62]    Ray C & Ryan K.J, Sherris Medical Microbiology: An Introduction to Infectiuos Disease, Chicago, USA, McGraw Hill Medical, 2003. ISBN (Electronic): 978-0838585290. ISBN (Printed): 0838585299.

    Google Scholar 
    [63]    Daum RS, Ito T, Hiramatsu K, Hussain F, Mongkolrattanothai K, Jamklang M, et al. A novel methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus aureus isolates of diverse genetic backgrounds. The Journal of infectious diseases. 2002;186(9):1344-7. https://doi.org/10.1086/344326.

    Google Scholar 
    [64]    Fey P, Said-Salim B, Rupp M, Hinrichs S, Boxrud D, Davis C, Kreiswirth BN, Schlievert PM. Comparative molecular analysis of community-or hospital-acquired methicillin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2003;47(1):196-203. https://doi.org/10.1128/aac.47.1.196-203.2003.

    Google Scholar 



    @article{issa,kovandilawerandmuhsin,mohammeddlshad2023,
     author = {Issa, Kovan Dilawer and Muhsin, Mohammed Dlshad},
     title = {Beta–Lactam Drug Resistance Pattern in Staphylococcus aureus Isolates: A Review},
     journal = {Eurasian J. Sci. Eng},
     volume = {9},
     number = {3},
     pages = {141-153},
     year = {2023}
    }
    Copy

    Issa, K. D., & Muhsin, M. D. (2023). Beta–Lactam Drug Resistance Pattern in Staphylococcus aureus Isolates: A Review. Eurasian J. Sci. Eng, 9(3),141-153.

    Copy

    Issa, KD, and Muhsin, MD. "Beta–Lactam Drug Resistance Pattern in Staphylococcus aureus Isolates: A Review." Eurasian J. Sci. Eng, 9.3, (2023), pp.141-153.

    Copy

    Issa, K. D., & Muhsin, M. D. (2023) "Beta–Lactam Drug Resistance Pattern in Staphylococcus aureus Isolates: A Review", Eurasian J. Sci. Eng, 9(3), pp.141-153.

    Copy

    Issa KD, Muhsin MD. Beta–Lactam Drug Resistance Pattern in Staphylococcus aureus Isolates: A Review. Eurasian J. Sci. Eng. 2023; 9(3):141-153.

    Copy

    Under Development

    Under Development

    Under Development

  • Beta–Lactam Drug Resistance Pattern in Staphylococcus aureus Isolates: A Review