On the Domain of Nörlund Matrix in the Space of Bounded Variation Sequences

Authors

  • Orhan Tug Mathematics Education Department, Ishik University, Erbil, Iraq

DOI:

https://doi.org/10.23918/eajse.v3i2p111

Keywords:

Bounded Variation, Nörlund Mean, Sequence Spaces, Matrix Domain, Matrix Transformation, 2010 Mathematics Subject Classification, 46A45, 40C05

Abstract

In this paper, we introduce a new sequence space bv(Nt) as the domain of Nörlund matrix Nt in the space of all sequences of bounded variation. Firstly, we give some topological properties and inclusion relations. Moreover, we determine the  α-, β- and γ- duals of the space bv(Nt) . Finally, we characterize some new matrix classes over the space bv(Nt)  into some classical sequence space and vice versa.

References

Al-Jarrah, A. M., & Malkowsky, E. (1998). BK spaces, bases and linear operators. Rend. Circ. Mat.

Palermo (2) Suppl, 52, 177-191.

Duran, J. P. (1972). Infinite matrices and almost-convergence. Mathematische Zeitschrift, 128(1),

75-83.

King, J. P. (1966). Almost summable sequences. Proceedings of the American Mathematical

Society, 17(6), 1219-1225.

Kirişci, M. (2014). The sequence space bv and some applications. arXiv preprint arXiv:1403.1720.

Mears, F. M. (1943). The inverse Nörlund mean. Annals of Mathematics, 401-410.

Ng, P. N. (1978). Matrix Transformations on Cesaro Sequence Spaces of a Nonabsolute Type. Lee

Kong Chian Institute of Mathematics & Computer Science, Nanyang University.

Şengönül, M., & Başar, F. (2005). Some new cesaro sequence spaces of non-absolute type which

include. Soochow Journal of Mathematics, 31(1), 107-119.

Sıddıqi, J. A. (1971). Infinite matrices summing every almost periodic sequences. Pac. J.

Math, 39(1), 235-251.

Sönmez, A. (2013). Almost convergence and triple band matrix. Mathematical and Computer

Modelling, 57(9), 2393-2402.

Stieglitz, M., & Tietz, H. (1977). Matrix transformationen von folgenräumen eine

ergebnisübersicht. Mathematische Zeitschrift, 154(1), 1-16.

Tuǧ, O., & Başar, F. (2016). On the Spaces of Nörlund Almost Null and Nörlund Almost

Convergent Sequences. Filomat, 30(3), 773-783.

Tug, O., & Basar F. (2016). On the domain of Norlund mean in the spaces of null and convergent

sequences. TWMS J. Pure Appl. Math, 7.1 76-87.

Wang, C. S. (1978). On Nörlund sequence spaces. Tamkang J. Math, 9(1), 269-274.

Yeşilkayagil, M., & Başar, F. (2015). Spaces of Aλ-almost null and Aλ-almost convergent

sequences. Journal of the Egyptian Mathematical Society, 23(1), 119-126.

Yeşilkayagil, M., & Başar, F. ( 2014). On the Paranormed Nörlund Sequence Space of Nonabsolute

Type, Abst. Appl. Anal., vol. 2014, Article ID 858704, 9 pages, doi:10.1155/2014/858704

Yeşilkayagil, M., & Başar, F. (2017). Domain of the Nörlund Matrix in Some of Maddox’s

Spaces. Proc. Nat. Sci. India Sect. A 87(3), 363-371.

Downloads

Published

2017-12-01

Issue

Section

Articles

How to Cite

Tug, O. (2017). On the Domain of Nörlund Matrix in the Space of Bounded Variation Sequences. EURASIAN JOURNAL OF SCIENCE AND ENGINEERING, 3(2), 111-120. https://doi.org/10.23918/eajse.v3i2p111

Similar Articles

1-10 of 93

You may also start an advanced similarity search for this article.