Nörlund Matrix Domain on Sequence Spaces of p-adic Numbers

Authors

  • Orhan Tuğ Mathematics Education Department, Ishik University, Erbil, Iraq

DOI:

https://doi.org/10.23918/eajse.v3i3p33

Keywords:

Nörlund Matrix, Sequence Spaces of p-adic Numbers, Matrix Transformations

Abstract

In this paper, we introduce some new sequence spaces p-adic numbers l(p) (Nt), c(p)(Nt) and c0(p)(Nt) as Nörlund matrix domain in the sequence spaces l(p) , c(p) and c0(p), respectively. Moreover, α – , β – and γ – dual of these new spaces are calculated with some topological properties. We characterize some new matrix classes related with the spaces l(p) (Nt), c(p)(Nt) and c0(p)(Nt) and we conclude the paper with some significant results and an application.

References

Andree, R. V., & Petersen, G. M. (1956). Matrix methods of summation, regular for -adic

valuations. Proceedings of the American Mathematical Society, 7(2), 250-253.

Bachman, G. (1964). Introduction to p-adic Numbers and Valuation Theory. Academic Press. Inc.

Borwein, D., & Jakimovski, A. (1994). Matrix transformations of power series. Proceedings of the

American Mathematical Society, 122(2), 511-523.

Cho, I. (2014). p-adic Banach space operators and adelic Banach space operators. Opuscula

Mathematica, 34.

Gouvêa, F. Q. (1997). Elementary Analysis in p. In p-adic Numbers (pp. 87-132). Springer Berlin

Heidelberg.

Katok, S. (2007). p-adic Analysis Compared with Real (Vol. 37). American Mathematical Soc.

Mahler, K. (1973). Introduction to P-Adic Numbers and Their Function. CUP Archive.

Robert, A. M. (2000). A course in p-adic analysis, volume 198 of Graduate Texts in Mathematics.

Sally, P. J. (1998). An introduction to p-adic fields, harmonic analysis and the representation theory

of SL2. Letters in Mathematical Physics, 46(1), 1-47.

Tug, O., & Basar, F. (2016). On the domain of norlund mean in the spaces of null and convergent

sequences, TWMS J. Pure Appl. Math, 7(1), 76-87.

Tuǧ, O., & Başar, F. (2016). On the spaces of nörlund almost null and nörlund almost convergent

sequences. Filomat, 30(3), 773-783.

Wilansky, A. (2000). Summability through Functional Analysis (Vol. 85). Elsevier.

Downloads

Published

2018-06-01

Issue

Section

Articles

How to Cite

Tuğ, O. (2018). Nörlund Matrix Domain on Sequence Spaces of p-adic Numbers. EURASIAN JOURNAL OF SCIENCE AND ENGINEERING, 3(3), 33-41. https://doi.org/10.23918/eajse.v3i3p33

Similar Articles

1-10 of 43

You may also start an advanced similarity search for this article.