The Relation between the Spaces L1(F ) and L1(T) with Some Applications
DOI:
https://doi.org/10.23918/eajse.v4i2p54Abstract
In this research we find the relation between the nonstandard space of Lebesgue integrable functions L1(F),where F={|-N⁄2|+1,|-N⁄2|+2,…,0,…,|N⁄2| is a *finite set for N > ℕ and the space of Lebesgue integrable functions L1(T), where T=[-π,π] , with some applications by using methods and techniques of nonstandard analysis.
References
C´ızek, V. (1986). Discrete fourier transforms and their applications. Brostol: Adam Hilger Ltd.
Cartier, P., & Perrin, Y. (1995). Integration over finite sets. In Francine Diener and Marc Diener, editors, Nonstandard analysis in practice, Universitext (pp. 185–204). Springer-Verlag, Berlin.
Cutland, N. (1988). Nonstandard analysis and its applications. London Mathematical Society Student Texts. Cambridge: Cambridge University Press.
Fremlin, D. (2004). Measure theory. Vol. 1. Torres Fremlin, Colchester, The irreducible minimum.
Hurd, A., & Loeb, P. (1985). An introduction to nonstandard real analysis. Orlando: Academic Press Inc.
Katznelson, Y. (2004). An introduction to harmonic analysis. Cambridge Mathematical Library. Cambridge University Press.
Lak, R. (2015). Harmonic analysis using methods in Nonstandard analysis. PhD thesis, University of Birmingham, UK.
Ponstein, J. (2002). Nonstandard analysis. University of Groningen, SOM Research School, Groningen. Retrieved from https://som.rug.nl/bestanden/ponstein.pdf.
Robinson, A. (1996). Non-standard analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1996.
Walker, J. (1988). Fourier analysis. New York: Oxford University Press.
Weaver, J. (1989). Theory of discrete and continuous Fourier analysis. A Wiley-Interscience Publication. New York: John Wiley & Sons Inc.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Eurasian J. Sci. Eng is distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY-4.0) https://creativecommons.org/licenses/by/4.0/