Zinc Oxide NPs as Solar Photo-Catalysis for Water Disinfection

Authors: Kadhim Qassim Jabbar1 & Azeez Abdullah Barzinjy2 & Samir Mustafa Hamad3
1Department of Physics, College of Education, Salahaddin University, Erbil, Iraq
2Department of Physics, College of Education, Salahaddin University, Erbil, Iraq
2Physics Education Department, Faculty of Education, Tishk International University, Erbil, Iraq
3Nanotechnology Department, Scientific Research Centre, Soran University, Erbil, Iraq
3Computer Department, Cihan University, Erbil, Erbil, Iraq

Abstract: Zinc oxide (ZnO) nanostructures have been revealed to be a photocatalytic prospect owing to the truth that they are cost-effective. Titanium dioxide (TiO2) and ZnO nanoparticles (NPs) are commonly utilized in sunscreens as inorganic physical sun blockers. However, ZnO is more operative in UVA (315-400 nm) range and TiO2 in the UVB (280-315 nm) range. The combination of these particles assures a broad-band UV protection. However, to solve the cosmetic drawback of these opaque sunscreens, micro-sized TiO2 and ZnO have been increasingly replaced by TiO2 and ZnO NPs. In many cases ZnO NPs can be counted as an effective replacement of TiO2 NPs, however, the former has a lower cost. This review is firstly focusing on the photo-degradation procedures using ZnO NPs. Secondly, there are numerous methods that have been used to enhance the photo-response of zinc oxide nano-structures. Additionally, with the high efficiency of the photocatalytic response of ZnO NPs, it has been shown that it can be obtained with the appropriate choice of the required nanostructures regarding the synthesis technique and also the correct photocatalytic system. ZnO NPs is a vital material for numerous industrial usages. ZnO has been found to be effective in various strains of microorganisms, and numerous research articles on this area are evidence of its potential as antimicrobial agent.

Keywords: Zinc Oxide, NPs, Solar Photo-Catalytic, Persistent Organic Pollutants, Wastewater Treatment

Download the PDF Document

Doi: 10.23918/eajse.v8i2p69

Published: September 6, 2022

References

Al-Fori, M., Dobretsov, S., Myint, M. T. Z., & Dutta, J. (2014). Antifouling properties of zinc oxide nanorod coatings. Biofouling, 30(7), 871-882.

Alaton, I. A., & Balcioglu, I. A. (2001). Photochemical and heterogeneous photocatalytic degradation of waste vinylsulphone dyes: A case study with hydrolyzed Reactive Black 5. Journal of Photochemistry and Photobiology A: Chemistry, 141(2-3), 247-254.

Alshehri, A. A., & Malik, M. A. (2019). Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. Journal of Materials Science: Materials in Electronics, 30(17), 16156-16173.

Alvi, M., Al-Ghamdi, A., & ShaheerAkhtar, M. (2017). Synthesis of ZnO nanostructures via low temperature solution process for photocatalytic degradation of rhodamine B dye. Materials Letters, 204, 12-15.

Arthanareeswari, M., Devikala, S., & Sridharan, M. (2019). Green synthesis of zinc oxide nanoparticles using typha latifolia. L leaf extract for photocatalytic applications. Materials Today: Proceedings, 14, 332-337.

Autin, O., Hart, J., Jarvis, P., MacAdam, J., Parsons, S. A., & Jefferson, B. (2013). The impact of background organic matter and alkalinity on the degradation of the pesticide metaldehyde by two advanced oxidation processes: UV/H2O2 and UV/TiO2. Water Research, 47(6), 2041-2049.

Bhardwaj, S., Dogra, D., Pal, B., & Singh, S. (2019). Photodeposition time dependant growth, size and photoactivity of Ag and Cu deposited TiO2 nanocatalyst under solar irradiation. Solar Energy, 194, 618-627.

Biswas, A. K. (2006). Water management for major urban centres. Water Resources Development, 22(2), 183-197.

Cao, D., Gong, S., Shu, X., Zhu, D., & Liang, S. (2019). Preparation of ZnO nanoparticles with high dispersibility based on oriented attachment (OA) process. Nanoscale Research Letters, 14(1), 1-11.

Chen, L., Wu, Y., Dong, H., Meng, M., Li, C., Yan, Y., & Chen, J. (2018). An overview on membrane strategies for rare earths extraction and separation. Separation and Purification Technology, 197, 70-85.

Choi, K., Kang, T., & Oh, S.-G. (2012). Preparation of disk shaped ZnO particles using surfactant and their PL properties. Materials Letters, 75, 240-243.

Dimapilis, E. A. S., Hsu, C.-S., Mendoza, R. M. O., & Lu, M.-C. (2018). Zinc oxide nanoparticles for water disinfection. Sustainable Environment Research, 28(2), 47-56.

Fenoll, J., Ruiz, E., Hellín, P., Flores, P., & Navarro, S. (2011). Heterogeneous photocatalytic oxidation of cyprodinil and fludioxonil in leaching water under solar irradiation. Chemosphere, 85(8), 1262-1268.

Gharoy Ahangar, E., Abbaspour‐Fard, M. H., Shahtahmassebi, N., Khojastehpour, M., & Maddahi, P. (2015). Preparation and characterization of PVA/ZnO nanocomposite. Journal of food Processing and Preservation, 39(6), 1442-1451.

Gu, X., Li, C., Yuan, S., Ma, M., Qiang, Y., & Zhu, J. (2016). ZnO based heterojunctions and their application in environmental photocatalysis. Nanotechnology, 27(40), 402001.

Guo, H.-x., Lin, K.-l., Zheng, Z.-s., Xiao, F.-b., & Li, S.-x. (2012). Sulfanilic acid-modified P25 TiO2 nanoparticles with improved photocatalytic degradation on Congo red under visible light. Dyes and Pigments, 92(3), 1278-1284.

Hassan, N., Hashim, M., & Bououdina, M. (2013). One-dimensional ZnO nanostructure growth prepared by thermal evaporation on different substrates: ultraviolet emission as a function of size and dimensionality. Ceramics International, 39(7), 7439-7444.

He, X., Wang, A., Wu, P., Tang, S., Zhang, Y., Li, L., & Ding, P. (2020). Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review. Science of the Total Environment, 743, 140694.

Ibhadon, A. O., & Fitzpatrick, P. (2013). Heterogeneous photocatalysis: recent advances and applications. Catalysts, 3(1), 189-218.

Jang, E. S., Won, J. H., Hwang, S. J., & Choy, J. H. (2006). Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Advanced Materials, 18(24), 3309-3312.

Jimenez-Cadena, G., Comini, E., Ferroni, M., Vomiero, A., & Sberveglieri, G. (2010). Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells. Materials Chemistry and Physics, 124(1), 694-698.

Ju, D., Xu, H., Zhang, J., Guo, J., & Cao, B. (2014). Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing. Sensors and Actuators B: Chemical, 201, 444-451.

Kakar, M. U., Li, J., Mehboob, M. Z., Sami, R., Benajiba, N., Ahmed, A., . . . Dai, R. (2022). Purification, characterization, and determination of biological activities of water-soluble polysaccharides from Mahonia bealei. Scientific Reports, 12(1), 1-16.

Khan, M. A., Rahaman, M. S., Al-Jubayer, A., & Islam, J. (2015). Modification of jute fibers by radiation-induced graft copolymerization and their applications. Cellulose-Based Graft Copolymers: Structure and Chemistry; Thakur, VK, Ed, 209-235.

Kim, K.-B., Kim, Y. W., Lim, S. K., Roh, T. H., Bang, D. Y., Choi, S. M., . . . Kim, M.-K. (2017). Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. Journal of Toxicology and Environmental Health, Part B, 20(3), 155-182.

Kimiagar, S. (2015). Preparation of ZnO nanoparticles by different pulsed laser energy. Superlattices and Microstructures, 77, 12-17.

Kołodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide—from synthesis to application: a review. Materials, 7(4), 2833-2881.

Kumar, P., Liu, W., Chu, X., Zhang, Y., & Li, Z. (2019). Integrated water resources management for an inland river basin in China. Watershed Ecology and the Environment, 1, 33-38.

Lamba, R., Umar, A., Mehta, S., & Kansal, S. K. (2015). ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation. Journal of Alloys and Compounds, 653, 327-333.

Lee, J.-D., Lee, S.-H., Jo, M.-H., Park, P.-K., Lee, C.-H., & Kwak, J.-W. (2000). Effect of coagulation conditions on membrane filtration characteristics in coagulation− microfiltration process for water treatment. Environmental Science & Technology, 34(17), 3780-3788.

Lelario, F., Bianco, G., Bufo, S. A., & Scrano, L. (2021). Simulated Ageing of Crude Oil and Advanced Oxidation Processes for Water Remediation since Crude Oil Pollution. Catalysts, 11(8), 954.

Li, C., Sun, W., Lu, Z., Ao, X., & Li, S. (2020). Ceramic nanocomposite membranes and membrane fouling: A review. Water Research, 175, 115674.

Li, M., & Li, J. (2006). Size effects on the band-gap of semiconductor compounds. Materials Letters, 60(20), 2526-2529.

Liang, S., Xiao, K., Mo, Y., & Huang, X. (2012). A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. Journal of Membrane Science, 394, 184-192.

Liu, X., Ye, L., Liu, S., Li, Y., & Ji, X. (2016). Photocatalytic reduction of CO2 by ZnO micro/nanomaterials with different morphologies and ratios of {0001} facets. Scientific Reports, 6(1), 1-9.

Longo, S., d’Antoni, B. M., Bongards, M., Chaparro, A., Cronrath, A., Fatone, F., . . . Hospido, A. (2016). Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Applied Energy, 179, 1251-1268.

Luo, J., Ma, S., Sun, A., Cheng, L., Yang, G., Wang, T., . . . Gz, D. (2014). Ethanol sensing enhancement by optimizing ZnO nanostructure: From 1D nanorods to 3D nanoflower. Materials Letters, 137, 17-20.

Magalhaes, P., Andrade, L., Nunes, O. C., & Mendes, A. (2017). Titanium dioxide photocatalysis: Fundamentals and application on photoinactivation. Reviews on Advanced Materials Science, 51(2).

Mahadik, S. A., Patil, A., Pathan, H. M., Salunke-Gawali, S., & Butcher, R. J. (2020). Thionaphthoquinones as photosensitizers for TiO2 nanorods and ZnO nanograin based dye-sensitized solar cells: effect of nanostructures on charge transport and photovoltaic performance. Engineered Science, 14, 46-58.

Mahmoodi, N. M., Karimi, B., Mazarji, M., & Moghtaderi, H. (2018). Cadmium selenide quantum dot-zinc oxide composite: Synthesis, characterization, dye removal ability with UV irradiation, and antibacterial activity as a safe and high-performance photocatalyst. Journal of Photochemistry and Photobiology B: Biology, 188, 19-27.

Meng, Y., Lin, Y., & Yang, J. (2013). Synthesis of rod-cluster ZnO nanostructures and their application to dye-sensitized solar cells. Applied Surface Science, 268, 561-565.

Mianxince, S., Liang, B., Tianliang, Z., & Xiaoyong, Z. (2008). Surface ζ potential and photocatalytic activity of rare earths doped TiO2. Journal of Rare Earths, 26(5), 693-699.

Molinari, R., Lavorato, C., & Argurio, P. (2017). Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catalysis Today, 281, 144-164.

Molinari, R., Palmisano, L., Loddo, V., Mozia, S., & Morawski, A. (2013). Photocatalytic membrane reactors: Configurations, performance and applications in water treatment and chemical production. In Handbook of membrane reactors (pp. 808-845): Elsevier.

Monneyron, P., Manero, M.-H., Foussard, J.-N., Benoit-Marquié, F., & Maurette, M.-T. (2003). Heterogeneous photocatalysis of butanol and methyl ethyl ketone—characterization of catalyst and dynamic study. Chemical Engineering Science, 58(3-6), 971-978.

Munoz, I., Rieradevall, J., Torrades, F., Peral, J., & Domènech, X. (2005). Environmental assessment of different solar driven advanced oxidation processes. Solar Energy, 79(4), 369-375.

Ng, S. M., Wong, D. S. N., Phung, J. H. C., & Chua, H. S. (2013). Integrated miniature fluorescent probe to leverage the sensing potential of ZnO quantum dots for the detection of copper (II) ions. Talanta, 116, 514-519.

Niu, L., Zhao, X., Wu, F., Lv, H., Tang, Z., Liang, W., . . . Giesy, J. (2021). Solid-solid reaction synthesis of covalent organic framework as a stable and highly active photo-catalyst for degradation of sulfathiazole in industrial wastewater. Chemical Engineering Journal, 414, 128619.

Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536-551.

Onyszko, M., Markowska-Szczupak, A., Rakoczy, R., Paszkiewicz, O., Janusz, J., Gorgon-Kuza, A., . . . Mijowska, E. (2022). The cellulose fibers functionalized with star-like zinc oxide nanoparticles with boosted antibacterial performance for hygienic products. Scientific Reports, 12(1), 1-13.

Qalyoubi, L., Al-Othman, A., & Al-Asheh, S. (2021). Recent progress and challenges on adsorptive membranes for the removal of pollutants from wastewater. Part I: Fundamentals and classification of membranes. Case Studies in Chemical and Environmental Engineering, 3, 100086.

Qi, L., Li, H., & Dong, L. (2013). Simple synthesis of flower-like ZnO by a dextran assisted solution route and their photocatalytic degradation property. Materials Letters, 107, 354-356.

Qiu, R., Zhang, D., Mo, Y., Song, L., Brewer, E., Huang, X., & Xiong, Y. (2008). Photocatalytic activity of polymer-modified ZnO under visible light irradiation. Journal of Hazardous Materials, 156(1-3), 80-85.

Raimi, M. O., Adedotun, A. T., Emmanuel, O. O., & Anu, B. (2019). An analysis of bayelsa state water challenges on the rise and its possible solutions. Raimi Morufu Olalekan., et al. An Analysis of Bayelsa State Water Challenges on the Rise and Its Possible Solutions’. Acta Scientific Agriculture, 3(2019), 110-125.

Rajar, K., Balouch, A., Bhanger, M., Sherazi, T. H., & Kumar, R. (2018). Degradation of 4-chlorophenol under sunlight using ZnO nanoparticles as catalysts. Journal of Electronic Materials, 47(3), 2177-2183.

Rodriguez, S., Santos, A., & Romero, A. (2011). Effectiveness of AOP’s on abatement of emerging pollutants and their oxidation intermediates: Nicotine removal with Fenton’s Reagent. Desalination, 280(1-3), 108-113.

Rozas, O., Contreras, D., Mondaca, M. A., Pérez-Moya, M., & Mansilla, H. D. (2010). Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions. Journal of Hazardous Materials, 177(1-3), 1025-1030.

Sowrirajan, S., Maheshwari, G., & Joseph, B. (2022). Nano zinc oxide-alumina in solar degradation of Thymol blue. Materials Today: Proceedings, 55, 226-233.

Spasiano, D., Marotta, R., Malato, S., Fernandez-Ibanez, P., & Di Somma, I. (2015). Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Applied Catalysis B: Environmental, 170, 90-123.

Tony, M. A., Zhao, Y., Purcell, P. J., & El-Sherbiny, M. (2009). Evaluating the photo-catalytic application of Fenton’s reagent augmented with TiO2 and ZnO for the mineralization of an oil-water emulsion. Journal of Environmental Science and Health Part A, 44(5), 488-493.

Wang, A.-n., Teng, Y., Hu, X.-f., Wu, L.-h., Huang, Y.-j., Luo, Y.-m., & Christie, P. (2016). Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: degradation pathway, optimization of operating parameters and effects of soil properties. Science of the Total Environment, 541, 348-355.

Wang, D., Wang, Y., Li, X., Luo, Q., An, J., & Yue, J. (2008). Sunlight photocatalytic activity of polypyrrole–TiO2 nanocomposites prepared by ‘in situ’method. Catalysis Communications, 9(6), 1162-1166.

Wang, X., Zhang, S., Peng, B., Wang, H., Yu, H., & Peng, F. (2016). Enhancing the photocatalytic efficiency of TiO2 nanotube arrays for H2 production by using non-noble metal cobalt as co-catalyst. Materials Letters, 165, 37-40.

Wolska-Pietkiewicz, M., Tokarska, K., Wojewódzka, A., Wójcik, K., Chwojnowska, E., Grzonka, J., . . . Lewiński, J. (2019). ZnO nanocrystals derived from organometallic approach: Delineating the role of organic ligand shell on physicochemical properties and nano-specific toxicity. Scientific Reports, 9(1), 1-14.

Xu, F., Qin, Q., Mishra, A., Gu, Y., & Zhu, Y. (2010). Mechanical properties of ZnO nanowires under different loading modes. Nano Research, 3(4), 271-280.

Yu, J., Zhang, W., Li, Y., Wang, G., Yang, L., Jin, J., . . . Huang, M. (2014). Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomedical Materials, 10(1), 015001.

Yue, S., Lu, J., & Zhang, J. (2009). Synthesis of three-dimensional ZnO superstructures by a one-pot solution process. Materials Chemistry and Physics, 117(1), 4-8.

Zavar, S. (2017). A novel three component synthesis of 2-amino-4H-chromenes derivatives using nano ZnO catalyst. Arabian Journal of Chemistry, 10, S67-S70.

Zhang, D., Li, G., & Jimmy, C. Y. (2010). Inorganic materials for photocatalytic water disinfection. Journal of Materials Chemistry, 20(22), 4529-4536.

Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., & Liu, R. (2014). Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific Reports, 4(1), 1-8.