Current Researches on Novel Applications of Carbon Nanotubes

Authors: Masoud Muhammed Zankana1 & Banaz Shahab Haji2 & Azeez Abdullah Barzinjy3 & Samir Mustafa Hamad4
1Department of Chemistry, University of Garmian, Sulaimani, Iraq
2Department of Physics, College of Education, Salahaddin University, Erbil, Iraq
3Department of Physics, College of Education, Salahaddin University, Erbil, Iraq
3Physics Education Department, Faculty of Education, Tishk International University, Erbil, Iraq
4Nanotechnology Department, Scientific Research Centre, Soran University, Erbil, Iraq
4Computer Department, Cihan University-Erbil, Erbil, Iraq

Abstract: Nanostructured materials are of extraordinary intrigued within the vitality capacity and change field due to their great mechanical and electrical properties. Carbon nanotubes are substances which have been shown those properties. They are an interesting nanostructure that has promising possibilities for future applications. CNTs have different allotropes such as fullerenes, CNTs and graphene. They have been subjects of wide investigate intrigued due to their potential for novel applications spread over the logical range. Graphene to a great extent considered the essential of all carbon allotropes can be formed to make 0D fullerene or rolled to create 1D CNTs. CNTs come in numerous shapes which shift by diameter and by the course of action of their hexagonal clusters within the grid. These contrasts result in the changes to the thickness of electronic states and give each sort of CNTs one of a kind of electrical and basic properties. Progresses in synthesis and decontamination have given analysts get to higher quality materials which has empowered distant better and improved understanding of their properties and their guarantee for future electronic applications.

Keywords: Carbon Nanotubes, Cnts, Single-Walled Carbon Nanotubes, Double-Walled Carbon Nanotubes, Multi-Walled Carbon Nanotubes

Download the PDF Document

Doi: 10.23918/eajse.v8i2p83

Published: September 18, 2022

References

Adohi, B.-P., Mdarhri, A., Prunier, C., Haidar, B., & Brosseau, C. (2010). A comparison between physical properties of carbon black-polymer and carbon nanotubes-polymer composites. Journal of Applied Physics, 108(7), 074108.

Ajayan, P. M. (1999). Nanotubes from carbon. Chemical Reviews, 99(7), 1787-1800.

Amin, R., Kumar, P. R., & Belharouak, I. (2020). Carbon nanotubes: Applications to energy storage devices. Carbon Nanotubes-Redefining the World of Electronics, 10, 5772-94155.

An, L. B., Feng, L. J., & Lu, C. G. (2011). Mechanical properties and applications of carbon nanotubes. Paper presented at the Advanced Materials Research.

Ando, Y., & Zhao, X. (2006). Synthesis of carbon nanotubes by arc-discharge method. New Diamond and Frontier Carbon Technology, 16(3), 123-138.

Ando, Y., Zhao, X., Shimoyama, H., Sakai, G., & Kaneto, K. (1999). Physical properties of multiwalled carbon nanotubes. International Journal of Inorganic Materials, 1(1), 77-82.

Awasthi, K., Srivastava, A., & Srivastava, O. (2005). Synthesis of carbon nanotubes. Journal of nanoscience and nanotechnology, 5(10), 1616-1636.

Bajpai, J., Yadav, R., Tiwari, K., Rastogi, N., & Deva, D. (2015). Carbon Nanotube-polymer composites for sensor applications. The International Journal of Science and Technoledge, 3(8), 27.

Barus, S., Zanetti, M., Bracco, P., Musso, S., Chiodoni, A., & Tagliaferro, A. (2010). Influence of MWCNT morphology on dispersion and thermal properties of polyethylene nanocomposites. Polymer Degradation and Stability, 95(5), 756-762.

Bierdel, M., Buchholz, S., Michele, V., Mleczko, L., Rudolf, R., Voetz, M., & Wolf, A. (2007). Industrial production of multiwalled carbon nanotubes. physica status solidi (b), 244(11), 3939-3943.

Chang, T., Jensen, L. R., Kisliuk, A., Pipes, R., Pyrz, R., & Sokolov, A. (2005). Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 46(2), 439-444.

Chrzanowska, J., Hoffman, J., Małolepszy, A., Mazurkiewicz, M., Kowalewski, T. A., Szymanski, Z., & Stobinski, L. (2015). Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. physica status solidi (b), 252(8), 1860-1867.

Collins, P. G., Bradley, K., Ishigami, M., & Zettl, d. A. (2000). Extreme oxygen sensitivity of electronic properties of carbon nanotubes. science, 287(5459), 1801-1804.

Darkrim, F. L., Malbrunot, P., & Tartaglia, G. (2002). Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy, 27(2), 193-202.

De las Casas, C., & Li, W. (2012). A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources, 208, 74-85.

Dillon, A. C., Jones, K., Bekkedahl, T., Kiang, C., Bethune, D., & Heben, M. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature, 386(6623), 377-379.

Dresselhaus, M. S., & Avouris, P. (2001). Introduction to carbon materials research. In Carbon nanotubes (pp. 1-9): Springer.

Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., . . . Joo, S. W. (2014). Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale research letters, 9(1), 1-13.

Ebbesen, T., Lezec, H., Hiura, H., Bennett, J., Ghaemi, H., & Thio, T. (1996). Electrical conductivity of individual carbon nanotubes. Nature, 382(6586), 54-56.

Gangu, K. K., Maddila, S., & Jonnalagadda, S. B. (2019). A review on novel composites of MWCNTs mediated semiconducting materials as photocatalysts in water treatment. Science of the Total Environment, 646, 1398-1412.

Gordon, P. A., & Saeger, R. B. (1999). Molecular modeling of adsorptive energy storage: Hydrogen storage in single-walled carbon nanotubes. Industrial & engineering chemistry research, 38(12), 4647-4655.

Guldi, D. M., Rahman, G., Prato, M., Jux, N., Qin, S., & Ford, W. (2005). Single‐wall carbon nanotubes as integrative building blocks for solar‐energy conversion. Angewandte Chemie, 117(13), 2051-2054.

Guo, J., Liu, Y., Prada‐Silvy, R., Tan, Y., Azad, S., Krause, B., . . . Grady, B. P. (2014). Aspect ratio effects of multi‐walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. Journal of Polymer Science Part B: Polymer Physics, 52(1), 73-83.

Guo, T., Nikolaev, P., Rinzler, A. G., Tomanek, D., Colbert, D. T., & Smalley, R. E. (1995). Self-assembly of tubular fullerenes. The Journal of Physical Chemistry, 99(27), 10694-10697.

Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1995). Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters, 243(1-2), 49-54.

Haddon, R. C. (2002). Carbon nanotubes. In (Vol. 35, pp. 997-997): ACS Publications.

Han, M., Kim, J. K., Lee, J., An, H. K., Yun, J. P., Kang, S.-W., & Jung, D. (2020). Room-temperature hydrogen-gas sensor based on carbon nanotube yarn. Journal of Nanoscience and Nanotechnology, 20(7), 4011-4014.

Hároz, E. H., Duque, J. G., Tu, X., Zheng, M., Walker, A. R. H., Hauge, R. H., . . . Kono, J. (2013). Fundamental optical processes in armchair carbon nanotubes. Nanoscale, 5(4), 1411-1439.

He, H., Pham-Huy, L. A., Dramou, P., Xiao, D., Zuo, P., & Pham-Huy, C. (2013). Carbon nanotubes: applications in pharmacy and medicine. BioMed research international, 2013.

Huynh, M. T., Veyan, J. F., Pham, H., Rahman, R., Yousuf, S., Brown, A., . . . Smaldone, R. A. (2020). The Importance of Evaluating the Lot-to-Lot Batch Consistency of Commercial Multi-Walled Carbon Nanotube Products. Nanomaterials, 10(10), 1930.

Ibrahim, K. S. (2013). Carbon nanotubes-properties and applications: a review. Carbon letters, 14(3), 131-144.
Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354(6348), 56-58.

Itkis, M. E., Borondics, F., Yu, A., & Haddon, R. C. (2006). Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 312(5772), 413-416.

Jeon, I., Matsuo, Y., & Maruyama, S. (2019). Single-walled carbon nanotubes in solar cells. Single-walled carbon nanotubes, 271-298.

Karousis, N., Tagmatarchis, N., & Tasis, D. (2010). Current progress on the chemical modification of carbon nanotubes. Chemical Reviews, 110(9), 5366-5397.

Kasuya, A., Saito, Y., Sasaki, Y., Fukushima, M., Maedaa, T., Horie, C., & Nishina, Y. (1996). Size dependent characteristics of single wall carbon nanotubes. Materials Science and Engineering: A, 217, 46-47.

Kim, I. T., Nunnery, G. A., Jacob, K., Schwartz, J., Liu, X., & Tannenbaum, R. (2010). Synthesis, characterization, and alignment of magnetic carbon nanotubes tethered with maghemite nanoparticles. The Journal of Physical Chemistry C, 114(15), 6944-6951.

Kong, J., Chapline, M. G., & Dai, H. (2001). Functionalized carbon nanotubes for molecular hydrogen sensors. Advanced Materials, 13(18), 1384-1386.

Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., & Dai, H. (2000). Nanotube molecular wires as chemical sensors. science, 287(5453), 622-625.

Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. nature, 318(6042), 162-163.

Liu, C., Fan, Y., Liu, M., Cong, H., Cheng, H., & Dresselhaus, M. S. (1999). Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286(5442), 1127-1129.

Lu, A., & Pan, B. (2004). Nature of single vacancy in achiral carbon nanotubes. Physical Review Letters, 92(10), 105504.

Lu, J. P. (1997). Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters, 79(7), 1297.

Lu, X., Dou, H., Gao, B., Yuan, C., Yang, S., Hao, L., . . . Zhang, X. (2011). A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochimica Acta, 56(14), 5115-5121.

Maeda, T., & Horie, C. (1999). Phonon modes in single-wall nanotubes with a small diameter. Physica B: Condensed Matter, 263, 479-481.

Mamalis, A., Vogtländer, L., & Markopoulos, A. (2004). Nanotechnology and nanostructured materials: trends in carbon nanotubes. Precision Engineering, 28(1), 16-30.

Misewich, J., Martel, R., Avouris, P., Tsang, J., Heinze, S., & Tersoff, J. (2003). Electrically induced optical emission from a carbon nanotube FET. Science, 300(5620), 783-786.

Mubeen, S., Zhang, T., Chartuprayoon, N., Rheem, Y., Mulchandani, A., Myung, N. V., & Deshusses, M. A. (2010). Sensitive detection of H2S using gold nanoparticle decorated single-walled carbon nanotubes. Analytical Chemistry, 82(1), 250-257.

Okpalugo, T., Papakonstantinou, P., Murphy, H., McLaughlin, J., & Brown, N. (2005). High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon, 43(1), 153-161.

Park, S.-J., & Lee, S.-Y. (2009). Hydrogen storage behaviors of carbon nanotubes/metal-organic frameworks-5 hybrid composites. Carbon letters, 10(1), 19-22.

Piloto, C. (2016). Carbon nanomaterials for room temperature gas sensing. Queensland University of Technology,

Polizu, S., Savadogo, O., Poulin, P., & Yahia, L. H. (2006). Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. Journal of nanoscience and nanotechnology, 6(7), 1883-1904.

Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 43(3), 61-102.

Popov, V. N. (2020). Theoretical evidence of a significant modification of the electronic structure of double-walled carbon nanotubes due to the interlayer interaction. Carbon, 170, 30-36.

Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., & Kizek, R. (2011). Methods for carbon nanotubes synthesis. Journal of Materials Chemistry, 21(40), 15872-15884.

Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1992a). Electronic structure of graphene tubules based on C 60. Physical Review B, 46(3), 1804.

Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, u. M. (1992b). Electronic structure of chiral graphene tubules. Applied Physics Letters, 60(18), 2204-2206.

Salmankhani, A., Karami, Z., Mashhadzadeh, A. H., Ganjali, M. R., Vatanpour, V., Esmaeili, A., . . . Celzard, A. (2020). New insights into H2S adsorption on graphene and graphene-like structures: a comparative DFT study. C, 6(4), 74.

Sayago, I., Terrado, E., Lafuente, E., Horrillo, M., Maser, W. K., Benito, A. M., . . . Gutierrez, J. (2005). Hydrogen sensors based on carbon nanotubes thin films. Synthetic Metals, 148(1), 15-19.

Shanmugharaj, A., Bae, J., Lee, K. Y., Noh, W. H., Lee, S. H., & Ryu, S. H. (2007). Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Composites Science and Technology, 67(9), 1813-1822.

Shao, W., Arghya, P., Yiyong, M., Rodes, L., & Prakash, S. (2013). Carbon nanotubes for use in medicine: Potentials and limitations. Syntheses and applications of carbon nanotubes and their composites, 13, 285-311.

Shen, C., Brozena, A. H., & Wang, Y. (2011). Double-walled carbon nanotubes: challenges and opportunities. Nanoscale, 3(2), 503-518.

Shtogun, Y. V., & Woods, L. M. (2009). Electronic and magnetic properties of deformed and defective single wall carbon nanotubes. Carbon, 47(14), 3252-3262.

Soto, M., Boyer, T., Biradar, S., Ge, L., Vajtai, R., Elías-Zúñiga, A., . . . Barrera, E. (2015). Effect of interwall interaction on the electronic structure of double-walled carbon nanotubes. Nanotechnology, 26(16), 165201.

Srivastava, R., Suman, H., Shrivastava, S., & Srivastava, A. (2019). DFT analysis of pristine and functionalized zigzag CNT: A case of H2S sensing. Chemical Physics Letters, 731, 136575.

Star, A., Lu, Y., Bradley, K., & Grüner, G. (2004). Nanotube optoelectronic memory devices. Nano Letters, 4(9), 1587-1591.

Subramoney, S. (1997). Science of fullerenes and carbon nanotubes. By MS Dresselhaus, G. Dresselhaus, and PC Eklund, XVIII, 965 pp., Academic press, San Diego, CA 1996, hardcover, ISBN 012‐221820‐5. In: Wiley Online Library.

Susantyoko, R. A., Alkindi, T. S., Kanagaraj, A. B., An, B., Alshibli, H., Choi, D., . . . Almheiri, S. (2018). Performance optimization of freestanding MWCNT-LiFePO 4 sheets as cathodes for improved specific capacity of lithium-ion batteries. RSC advances, 8(30), 16566-16573.

Szabó, A., Perri, C., Csató, A., Giordano, G., Vuono, D., & Nagy, J. B. (2010). Synthesis methods of carbon nanotubes and related materials. Materials, 3(5), 3092-3140.

Tanaka, H., El-Merraoui, M., Steele, W., & Kaneko, K. (2002). Methane adsorption on single-walled carbon nanotube: a density functional theory model. Chemical Physics Letters, 352(5-6), 334-341.

Tans, S. J., Devoret, M. H., Dai, H., Thess, A., Smalley, R. E., Geerligs, L., & Dekker, C. (1997). Individual single-wall carbon nanotubes as quantum wires. Nature, 386(6624), 474-477.

Tans, S. J., Verschueren, A. R., & Dekker, C. (1998). Room-temperature transistor based on a single carbon nanotube. Nature, 393(6680), 49-52.

Tavakkoli, H., Akhond, M., Ghorbankhani, G. A., & Absalan, G. (2020). Electrochemical sensing of hydrogen peroxide using a glassy carbon electrode modified with multiwalled carbon nanotubes and zein nanoparticle composites: application to HepG2 cancer cell detection. Microchimica Acta, 187(2), 1-12.

Valentini, L., Cantalini, C., Lozzi, L., Armentano, I., Kenny, J., & Santucci, S. (2003). Reversible oxidation effects on carbon nanotubes thin films for gas sensing applications. Materials Science and Engineering: C, 23(4), 523-529.

Varghese, O., Kichambre, P., Gong, D., Ong, K., Dickey, E., & Grimes, C. (2001). Gas sensing characteristics of multi-wall carbon nanotubes. Sensors and Actuators B: Chemical, 81(1), 32-41.

Vasylenko, A., Tokarchuk, M., & Jurga, S. (2015). Effect of a vacancy in single-walled carbon nanotubes on He and NO adsorption. The Journal of Physical Chemistry C, 119(9), 5113-5116.

Wan, Q., Zhang, X., & Gui, Y. (2015). Theoretical study on pt-doped carbon nanotubes used to detect typical exhaled gases of lung cancer. Journal of Computational and Theoretical Nanoscience, 12(10), 3412-3417.

Wan, X., Dong, J., & Xing, D. (1998). Optical properties of carbon nanotubes. Physical Review B, 58(11), 6756.

Wang, Y., & Yeow, J. T. (2009). A review of carbon nanotubes-based gas sensors. Journal of sensors, 2009.

Wepasnick, K. A., Smith, B. A., Bitter, J. L., & Howard Fairbrother, D. (2010). Chemical and structural characterization of carbon nanotube surfaces. Analytical and bioanalytical chemistry, 396(3), 1003-1014.

Wu, T.-M., & Chen, E.-C. (2008). Preparation and characterization of conductive carbon nanotube–polystyrene nanocomposites using latex technology. Composites Science and Technology, 68(10-11), 2254-2259.

Wu, Y., Cheng, P., Zhu, H., Huang, Y., Zhang, K., & Liao, R. (2015). Transport properties of double-walled carbon nanotubes and carbon boronitride heteronanotubes. Carbon, 95, 220-227.

Xie, S., Chang, B., Li, W., Pan, Z., Sun, L., Mao, J., . . . Zhou, W. (1999). Synthesis and characterization of aligned carbon nanotube arrays. Advanced Materials, 11(13), 1135-1138.

Yang, L. (2017). Functionalized double-walled carbon nanotubes for integrated gas sensors. Université Paul Sabatier-Toulouse III,

Yang, S., Li, X., Zhu, W., Wang, J., & Descorme, C. (2008). Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon, 46(3), 445-452.

Yu, C., Shi, L., Yao, Z., Li, D., & Majumdar, A. (2005). Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Letters, 5(9), 1842-1846.

Zhang, R., Zhang, Y., Zhang, Q., Xie, H., Qian, W., & Wei, F. (2013). Growth of half-meter long carbon nanotubes based on Schulz–Flory distribution. Acs Nano, 7(7), 6156-6161.

Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., & Jena, P. (2015). Penta-graphene: A new carbon allotrope. Proceedings of the National Academy of Sciences, 112(8), 2372-2377.

Zhang, T., Mubeen, S., Myung, N. V., & Deshusses, M. A. (2008). Recent progress in carbon nanotube-based gas sensors. Nanotechnology, 19(33), 332001.

Züttel, A., Sudan, P., Mauron, P., Kiyobayashi, T., Emmenegger, C., & Schlapbach, L. (2002). Hydrogen storage in carbon nanostructures. International Journal of Hydrogen Energy, 27(2), 203-212.