Mechanical Properties of Carbon Nanotubes (CNTs): A Review

Authors: Mohammed Najat Rashko1 & Samir Mustafa Hamad2 & Azeez Abdullah Barzinjy3 & Abubaker Hassan Hamad4
1Nanotechnology Department, Scientific Research Centre, Soran University, Erbil, Iraq
2Nanotechnology Department, Scientific Research Centre, Soran University, Erbil, Iraq
2Computer Department, Cihan University-Erbil, Erbil, Iraq
3Department of Physics, College of Education, Salahaddin University-Erbil, Iraq
3Physics Education Department, Faculty of Education, Tishk International University, Erbil, Iraq
4Department of General Science, Faculty of Education, Soran University, Erbil, Iraq

Abstract: In this review, the main approaches were utilized for fabrication nanostructure materials namely arc discharge, laser ablation, chemical vapor deposition, and green synthesis. Also, the advantages and disadvantages for each approach are discussed intensively. In addition, the structure and morphology of Carbon Nanotubes (CNTs), according to the number of layers CNTs classified single-wall carbon tubes (SWCTs), double wall carbon tubes (DWCTs), and multi-wall carbon tubes (MWCTs) are demonstrated in detail. SWCTs can be divided into chiral (m≠n), zigzag (m=0), and armchair (m=n) based on the geometrical arrangement of atoms or molecules. Moreover, some of the mechanical features of CNTs such as Young’s modules, strength and tensile strength, compressibility and deformability and fracture performance will be described. Throughout this review, it can be concluded that CNTs possess better mechanical features comparing with the analogous bulk or micro-scale tubes. For instance, Young’s module of CNTs increases by decreasing radius of CNTs. Furthermore, the strength and tensile strength of CNTs becomes stronger due to this covalent bond between carbon-carbon. On the other hand, compressibility and deformability will also improve due to the anisotropic feature of CNTs shape. It can be concluded that, CNTs possess a wide range of possible uses, and they can be used in nanoscale devices, electronic applications, optical operation, materials science, architecture and many more. Also, CNTs have been utilized in numerous novel applications owing to their unusual electrical features, unique strength, and heat transfer performance.

Keywords: CNTs, Structure and Morphology, Young’s Module, Strength and Tensile Strength, Compressibility and Deformability

Download the PDF Document

Doi: 10.23918/eajse.v8i2p54

Published: September 6, 2022


Ajayan, P. M. (1999). Nanotubes from carbon. Chemical Reviews, 99(7), 1787-1800.

Al-Kayiem, H. H., Lin, S. C., & Lukmon, A. (2013). Review on nanomaterials for thermal energy storage technologies. Nanoscience & Nanotechnology-Asia, 3(1), 60-71.

Aqel, A., Abou El-Nour, K. M., Ammar, R. A., & Al-Warthan, A. (2012). Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry, 5(1), 1-23.

Ayatollahi, M., Shadlou, S., Shokrieh, M., & Chitsazzadeh, M. (2011). Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polymer Testing, 30(5), 548-556.

Bradford, P. D., Wang, X., Zhao, H., & Zhu, Y. (2011). Tuning the compressive mechanical properties of carbon nanotube foam. Carbon, 49(8), 2834-2841.

Chaudhury, S., & Sinha, S. K. (2019). Carbon nanotube and nanowires for future semiconductor devices applications. In Nanoelectronics (pp. 375-398): Elsevier.

Chou, T.-W. (2005). Microstructural design of fiber composites: Cambridge University Press.

Clair, B. S. (2016). Nanotechnology Review And Future Predictions.

De Volder, M. F., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon nanotubes: present and future commercial applications. Science, 339(6119), 535-539.

Dillon, A. C., Jones, K., Bekkedahl, T., Kiang, C., Bethune, D., & Heben, M. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature, 386(6623), 377-379.

Ding, W., Dikin, D., Chen, X., Piner, R., Ruoff, R., Zussman, E., . . . Li, X. (2005). Mechanics of hydrogenated amorphous carbon deposits from electron-beam-induced deposition of a paraffin precursor. Journal of Applied Physics, 98(1), 014905.

Dresselhaus, M. S., Dresselhaus, G., Sugihara, K., Spain, I. L., & Goldberg, H. A. (1988). Synthesis of graphite fibers and filaments. Graphite Fibers and Filaments, 12-34.

Dresselhaus, M. S., Smalley, R. E., Dresselhaus, G., & Avouris, P. (2001). Carbon Nanotubes: Synthesis, Structure, Properties, and Applications: Springer Berlin Heidelberg.

Dupuis, A.-C. (2005). The catalyst in the CCVD of carbon nanotubes—a review. Progress in Materials Science, 50(8), 929-961.

Fanchi, J. R. (2002). Shared Earth Modeling: Methodologies for Integrated Reservoir Simulations: Elsevier Science.

Graham, A., Duesberg, G., Hoenlein, W., Kreupl, F., Liebau, M., Martin, R., . . . Steinhoegl, W. (2005). How do carbon nanotubes fit into the semiconductor roadmap? Applied Physics A, 80(6), 1141-1151.

Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1995). Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters, 243(1-2), 49-54.

Hakim, Y. Z., Yulizar, Y., Nurcahyo, A., & Surya, M. (2018). Green Synthesis of Carbon Nanotubes from Coconut Shell Waste for the Adsorption of Pb (II) Ions. Acta Chimica Asiana, 1(1), 6-10.

Harik, V. (2018). Mechanics of Carbon Nanotubes: Fundamentals, Modeling and Safety: Elsevier Science.

Harik, V. M., & Luo, L.-S. (2004). Micromechanics and Nanoscale Effects: MEMS, Multi-scale Materials and Micro-flows (Vol. 10): Springer Science & Business Media.

Harris, B., & Bunsell, A. R. (1977). Structure and properties of engineering materials: Longman Publishing Group.

Harris, P. J., & Harris, P. J. F. (2009). Carbon nanotube science: synthesis, properties and applications: Cambridge university press.

He, H., Pham-Huy, L. A., Dramou, P., Xiao, D., Zuo, P., & Pham-Huy, C. (2013). Carbon nanotubes: applications in pharmacy and medicine. BioMed research international, 2013.

Hennrich, F., Chan, C., Moore, V., Rolandi, M., & O’Connell, M. (2006). The element carbon: Taylor & Francis, Boca Raton, Fla, USA.

Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354(6348), 56-58.

Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603-605.

Jagadeesan, A. K., Thangavelu, K., & Dhananjeyan, V. (2020). Carbon Nanotubes: Synthesis, Properties and Applications. In 21st Century Surface Science-a Handbook: IntechOpen.

Kelly, B. (1981). Physics of Graphite (Applied Science. In: London.

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931.

Kong, X. Y., Ding, Y., Yang, R., & Wang, Z. L. (2004). Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 303(5662), 1348-1351.

Kroto, H. (1987). JR Heath. SC O’Brien, RF Curl and RE Smalley. Astrophys. J, 314, 352.

Library, S. P. (2021). Carbon nanotube space elevator.

Liu, J. Z., Zheng, Q., & Jiang, Q. (2003). Effect of bending instabilities on the measurements of mechanical properties of multiwalled carbon nanotubes. Physical review B, 67(7), 075414.

Loos, M. (2014). Carbon Nanotube Reinforced Composites: CNT Polymer Science and Technology: Elsevier Science.

Lordi, V., & Yao, N. (1998). Radial compression and controlled cutting of carbon nanotubes. The Journal of Chemical Physics, 109(6), 2509-2512.

Ma, Y. Z., Sobernheim, D., & Garzon, J. R. (2016). Glossary for Unconventional Oil and Gas Resource Evaluation and Development. In Unconventional Oil and Gas Resources Handbook (pp. 513-526): Elsevier.

Murata, K., Kaneko, K., Kokai, F., Takahashi, K., Yudasaka, M., & Iijima, S. (2000). Pore structure of single-wall carbon nanohorn aggregates. Chemical Physics Letters, 331(1), 14-20.

N. Bagotia, D. k. s. (2019). CNTs and graphene based polycarbonate nanocomposite.

NNI. (2020). National Nanotechnology Initiative. Retrieved from

Odom, T. W., Huang, J.-L., Kim, P., & Lieber, C. M. (1998). Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 391(6662), 62-64.

Pumera, M. (2007). Electrochemical properties of double wall carbon nanotube electrodes. Nanoscale Research Letters, 2(2), 87-93.

red, R. (2020). What Are Carbon NanoTubes? | Properties and Applications. Retrieved from

Robertson, J. (2007). Growth of nanotubes for electronics. Materials Today, 10(1-2), 36-43.

Sader, J. E., Chon, J. W., & Mulvaney, P. (1999). Calibration of rectangular atomic force microscope cantilevers. Review of scientific instruments, 70(10), 3967-3969.

Salvetat, J.-P., Bonard, J.-M., Thomson, N., Kulik, A., Forro, L., Benoit, W., & Zuppiroli, L. (1999). Mechanical properties of carbon nanotubes. Applied Physics A, 69(3), 255-260.

Sato, M. (2011). Elastic and plastic deformation of carbon nanotubes. Procedia engineering, 14, 2366-2372.

Seidel, R., Duesberg, G. S., Unger, E., Graham, A. P., Liebau, M., & Kreupl, F. (2004). Chemical vapor deposition growth of single-walled carbon nanotubes at 600 C and a simple growth model. The Journal of Physical Chemistry B, 108(6), 1888-1893.

Sengupta, J. (2018). Carbon nanotube fabrication at industrial scale: Opportunities and challenges. Handbook of Nanomaterials for Industrial Applications, 172-194.

Shirasu, K., Yamamoto, G., Nelias, D., & Hashida, T. (2017). Mechanical and fracture properties of carbon nanotubes. In Carbon Nanotubes-Recent Progress: IntechOpen.

Tebaldi, M. L., Belardi, R. M., & Montoro, S. R. (2016). Polymers with Nano-Encapsulated Functional Polymers: Encapsulated Phase Change Materials. In Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems (pp. 155-169): Elsevier.

Tersoff, J., & Ruoff, R. (1994). Structural properties of a carbon-nanotube crystal. Physical Review Letters, 73(5), 676.

Thostenson, E. T., Ren, Z., & Chou, T.-W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Composites science and technology, 61(13), 1899-1912.

Tîlmaciu, C.-M., & Morris, M. C. (2015). Carbon nanotube biosensors. Frontiers in Chemistry, 3, 59.

UnderstandingNano. (2019). Scanning the properties of nanotubes. Retrieved from

WenXing, B., ChangChun, Z., & WanZhao, C. (2004). Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Physica B: Condensed Matter, 352(1-4), 156-163.

Wilder, J. W., Venema, L. C., Rinzler, A. G., Smalley, R. E., & Dekker, C. (1998). Electronic structure of atomically resolved carbon nanotubes. Nature, 391(6662), 59-62.

Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L., & Lieber, C. M. (1998). Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature, 394(6688), 52-55.

Yakobson, B. I., Brabec, C., & Bernholc, J. (1996). Nanomechanics of carbon tubes: instabilities beyond linear response. Physical Review Letters, 76(14), 2511.

Yamamoto, G., Suk, J. W., An, J., Piner, R. D., Hashida, T., Takagi, T., & Ruoff, R. S. (2010). The influence of nanoscale defects on the fracture of multi-walled carbon nanotubes under tensile loading. Diamond and Related Materials, 19(7-9), 748-751.

Yang, L., Greenfeld, I., & Wagner, H. D. (2016). Toughness of carbon nanotubes conforms to classic fracture mechanics. Science Advances, 2(2), e1500969.

Yang, S. B., Kong, B.-S., Kim, D.-W., & Jung, H.-T. (2010). Comparison of the stability of surface-modified SWNTs and DWNTs network films. The Journal of Physical Chemistry C, 114(10), 4394-4398.

Yin, Y., Rioux, R. M., Erdonmez, C. K., Hughes, S., Somorjai, G. A., & Alivisatos, A. P. (2004). Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science, 304(5671), 711-714.

Yu, M.-F. (2004). Fundamental mechanical properties of carbon nanotubes: current understanding and the related experimental studies. J. Eng. Mater. Technol., 126(3), 271-278.

Zhu, L., Wang, J., & Ding, F. (2016). The great reduction of a carbon nanotube’s mechanical performance by a few topological defects. ACS Nano, 10(6), 6410-6415.