The Applications of Green Synthesized Silver Nanoparticles: A Review

Authors: Vinos Mushir Faris1 & Azeez Abdullah Barzinjy2 & Samir Mustafa Hamad3
1Nanotechnology Department, Soran Researcher Center, Soran University, Erbil, Iraq
2Department of Physics, College of Education, Salahaddin University, Erbil, Iraq
2Physics Education Department, Faculty of Education, Tishk International University, Erbil, Iraq
3Nanotechnology Department, Soran Researcher Center, Soran University, Erbil, Iraq

Abstract: Nanoscience is a fascinating field of study that has made unique outputs and applications both cost-effective and efficient. Significant and outstanding Nano-based applications have been applied in various sectors such as agricultural, food processing, and pharmaceutical sectors. Nanoparticles with sizes ranging from 1 to 100 nm have a significant measure of the relationship between surface area and volume. Because nanomaterials have a higher bioavailability than bigger particles, they can be used as individual cells; organs, and tissues are all examples of this. Silver is considered as the most researched and used material to prepare nanoparticle. Because of their vast range of prospective uses, silver nanoparticles have sparked a lot of attention. Silver nanoparticles are less hazardous to humans, but they are extremely harmful to bacteria. In biomedical applications, silver nanoparticles have been discovered to be useful in antimicrobial, catalysis, human health, and the environment cleanup. Silver nanoparticles are attractive catalytic materials for a variety of applications due to their outstanding optical and electrical characteristics. This article reviewed the synthesis of silver nanoparticles via green approach and important applications such as antimicrobial activity, insecticidal activity, anticancer activity, nano-biosensors, human health applications, environmental applications, painting application and many others.

Keywords: Nano Silver, Green Synthesis, Plant Extract, Applications, Antimicrobial, Anticancer, Sensors, Paint

Download the PDF Document

Doi: 10.23918/eajse.v8i2p16

Published: August 3, 2022

References

abbasi, E., Milani, M., Fekri Aval, S., Kouhi, M., Akbarzadeh, A., Tayefi Nasrabadi, H., Nikasa, P., Joo, S. W., Hanifehpour, Y., & Nejati-Koshki, K. (2016). Silver nanoparticles: synthesis methods, bio-applications and properties. Critical Reviews in Microbiology, 42, 173-180.

Abd El-Aziz, A., Al-Othman, M., Mahmoud, M., & Metwaly, H. (2015). Biosynthesis of silver nanoparticles using Fusarium solani and its impact on grain borne fungi. Digest Journal of Nanomaterials and Biostructures, 10, 655-662.

Abdel-Aziz, M. S., Shaheen, M. S., El-Nekeety, A. A., & Abdel-Wahhab, M. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18, 356-363.

Abdelghany, T., Al-Rajhi, A. M., Al Abboud, M. A., Alawlaqi, M., Magdah, A. G., Helmy, E. A., & Mabrouk, A. S. (2018). Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience, 8, 5-16.

Abou El-Nour, K. M., Eftaiha, A. A., Al-Warthan, A., & Ammar, R. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3, 135-140.

Ahamed, M., Alsalhi, M. S., & Siddiqui, M. (2010). Silver nanoparticle applications and human health. Clinica Chimica Acta, 411, 1841-1848.

Ahmad, N., & Sharma, S. (2012). Green synthesis of silver nanoparticles using extracts of Ananas comosus.

Ahmad, N., Sharma, S., Alam, M. K., Singh, V., Shamsi, S., Mehta, B., & Fatma, A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B: Biointerfaces, 81, 81-86.

Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of Advanced Research, 7, 17-28.

Ajitha, B., Reddy, Y. A. K., & Reddy, P. S. (2015). Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: evaluation of their innate antimicrobial and catalytic activities. Journal of Photochemistry and Photobiology B: Biology, 146, 1-9.

Al-Mubaddel, F. S., Haider, S., Al-Masry, W. A., Al-Zeghayer, Y., Imran, M., Haider, A., & Ullah, Z. (2017). Engineered nanostructures: A review of their synthesis, characterization and toxic hazard considerations. Arabian Journal of Chemistry, 10, S376-S388.

Alexander, J. W. (2009). History of the medical use of silver. Surgical Infections, 10, 289-292.

Amin, M., Anwar, F., Janjua, M. R. S. A., Iqbal, M. A. & Rashid, U. (2012). Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. International Journal of Molecular Sciences, 13, 9923-9941.

Ankamwar, B., Damle, C., Ahmad, A., & Sastry, M. (2005). Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. Journal of Nanoscience and Nanotechnology, 5, 1665-1671.

Araj, S.-E. A., Salem, N. M., Ghabeish, I. H., & Awwad, A. M. (2015). Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). Journal of Nanomaterials, 2015.

Ashokkumar, S., Ravi, S., Kathiravan, V. & Velmurugan, S. (2015). Retracted: Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity. Elsevier.

Banerjee, P., Satapathy, M., Mukhopahayay, A. & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1, 1-10.

Benakashani, F., Allafchian, A., & Jalali, S. (2016). Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala International Journal of Modern Science, 2, 251-258.

Bhakya, S., Muthukrishnan, S., Sukumaran, M., & Muthukumar, M. (2016). Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Applied Nanoscience, 6, 755-766.

Bindumadhavan, K., Chang, P.-Y., & Doong, R.-A. (2017). Silver nanoparticles embedded boron-doped reduced graphene oxide as anode material for high performance lithium ion battery. Electrochimica Acta, 243, 282-290.

Blaser, S. A., Scheringer, M., Macleod, M., & Hungerbühler, K. (2008). Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Science of the Total Environment, 390, 396-409.

Boca, S. C., Potara, M., Gabudean, A.-M., Juhem, A., Baldeck, P. L., & Astilean, S. (2011). Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Letters, 311, 131-140.

Chen, J., Shi, S., Su, R., Qi, W., Huang, R., Wang, M., Wang, L., & He, Z. (2015). Optimization and application of reflective LSPR optical fiber biosensors based on silver nanoparticles. Sensors, 15, 12205-12217.

Daniel, M.-C., & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104, 293-346.

Daniel, S. K., Banu, B. N., Harshiny, M., Nehru, K., Ganesh, P. S., Kumaran, S., & Sivakumar, M. (2014). Ipomea carnea-based silver nanoparticle synthesis for antibacterial activity against selected human pathogens. Journal of Experimental Nanoscience, 9, 197-209.

Das, S., Das, J., Samadder, A., Bhattacharyya, S. S., Das, D., & Khuda-Bukhsh, A. R. (2013). Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloids and Surfaces B: Biointerfaces, 101, 325-336.

De Aragao, A. P., De Oliveira, T. M., Quelemes, P. V., Perfeito, M. L. G., Araujo, M. C., Santiago, J. D. A. S., Cardoso, V. S., Quaresma, P., De Almeida, J. R. D. S., & Da Silva, D. A. (2019). Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arabian Journal of Chemistry, 12, 4182-4188.

Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assunção, M., Rosa, J., & Baptista, P. V. (2012). Noble metal nanoparticles for biosensing applications. Sensors, 12, 1657-1687.

Elemike, E. E., Dare, E. O., Samuel, I. D., & Onwuka, J. C. (2016). 2-Imino-(3, 4-dimethoxybenzyl) ethanesulfonic acid Schiff base anchored silver nanocomplex mediated by sugarcane juice and their antibacterial activities. Journal of Applied Research and Technology, 14, 38-46.

Emmanuel, R., Palanisamy, S., Chen, S.-M., Chelladurai, K., Padmavathy, S., Saravanan, M., Prakash, P., Ali, M. A., & Al-Hemaid, F. M. (2015). Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Materials Science and Engineering: C, 56, 374-379.

Fakruddin, M., Hossain, Z., & Afroz, H. (2012). Prospects and applications of nanobiotechnology: a medical perspective. Journal of Nanobiotechnology, 10, 1-8.

Firdhouse, M. J., & Lalitha, P. (2015). Biosynthesis of silver nanoparticles and its applications. Journal of Nanotechnology, 2015.

Firdhouse, M. J., & Lalitha, P. (2016). Biogenic silver nanoparticles–Synthesis, characterization and its potential against cancer inducing bacteria. Journal of Molecular Liquids, 222, 1041-1050.

Gade, A., Bonde, P., Ingle, A., Marcato, P., Duran, N., & Rai, M. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy, 2, 243-247.

Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. Engineering in Life Sciences, 5, 497-526.

Gerardo, C. D., Cretu, E., & Rohling, R. (2017). Fabrication of circuits on flexible substrates using conductive SU-8 for sensing applications. Sensors, 17, 1420.

Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60, 9781-9792.

Govarthanan, M., Seo, Y.-S., Lee, K.-J., Jung, I.-B., Ju, H.-J., Kim, J. S., Cho, M., Kamala-Kannan, S., & Oh, B.-T. (2016). Low-cost and eco-friendly synthesis of silver nanoparticles using coconut (Cocos nucifera) oil cake extract and its antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology, 44, 1878-1882.

Guo, C. F., Sun, T., Cao, F., Liu, Q., & Ren, Z. (2014). Metallic nanostructures for light trapping in energy-harvesting devices. Light: Science & Applications, 3, e161-e161.

Gurunathan, S. (2019). Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arabian Journal of Chemistry, 12, 168-180.

He, W., Liu, X., Kienzle, A., Müller, W. E., & Feng, Q. (2016). In vitro uptake of silver nanoparticles and their toxicity in human mesenchymal stem cells derived from bone marrow. Journal of Nanoscience and Nanotechnology, 16, 219-228.

Huang, L., Sun, Y., Mahmud, S. & Liu, H. (2020). Biological and environmental applications of silver nanoparticles synthesized using the aqueous extract of Ginkgo biloba leaf. Journal of Inorganic and Organometallic Polymers and Materials, 30, 1653-1668.

Hussain, M. A., Shah, A., Jantan, I., Tahir, M. N., Shah, M. R., Ahmed, R., & Bukhari, S. N. A. (2014). One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles. Journal of Nanobiotechnology, 12, 1-6.

Ibrahim, H. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences, 8, 265-275.

Ip, M., Lui, S. L., Poon, V. K., Lung, I., & Burd, A. (2006). Antimicrobial activities of silver dressings: an in vitro comparison. Journal of Medical Microbiology, 55, 59-63.

Jalandoni-Buan, A. C., Decena-Soliven, A. L. A., Cao, E. P., Barraquio, V. L., & Barraquio, W. L. (2015). Congo red decolorizing bacteria from paper factory Effluent. Microbial Degradation of Synthetic Dyes in Wastewaters. Springer.

Jana, N. R., Gearheart, L., & Murphy, C. J. (2001). Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods. See http://www. rsc. org/suppdata/cc/b1/b100521i. Chemical Communications, 617-618.

Jo, Y. K., Seo, J. H., Choi, B.-H., Kim, B. J., Shin, H. H., Hwang, B. H., & Cha, H. J. (2014). Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue. ACS Applied Materials & Interfaces, 6, 20242-20253.

Kaegi, R., Sinnet, B., Zuleeg, S., Hagendorfer, H., Mueller, E., Vonbank, R., Boller, M., & Burkhardt, M. (2010). Release of silver nanoparticles from outdoor facades. Environmental Pollution, 158, 2900-2905.

Kägi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., & Burkhardt, M. (2008). Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution, 156, 233-239.

Kathiravan, G. (2015). Biosynthesis of Silver Nanoparticles by Endophytic Fungi Pestaloptiopsis pauciseta Isolated from the Leaves of Psidium guajava Linn.

Khan, F. H. (2013). Chemical hazards of nanoparticles to human and environment (a review). Oriental Journal of Chemistry, 29, 1399.

Kotthaus, S., Gunther, B. H., Hang, R., & Schafer, H. (1997). Study of isotropically conductive bondings filled with aggregates of nano-sited Ag-particles. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 20, 15-20.

Koziara, J. M., Lockman, P. R., Allen, D. D., & Mumper, R. J. (2003). In situ blood–brain barrier transport of nanoparticles. Pharmaceutical Research, 20, 1772-1778.

Krishnaraj, C., Muthukumaran, P., Ramachandran, R., Balakumaran, M., & Kalaichelvan, P. (2014). Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnology Reports, 4, 42-49.

Krithiga, N., Rajalakshmi, A., & Jayachitra, A. (2015). Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. Journal of Nanoscience, 2015.

Limbach, L. K., Wick, P., Manser, P., Grass, R. N., Bruinink, A., & Stark, W. J. (2007). Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environmental Science & Technology, 41, 4158-4163.

Lin, P. C., Lin, H. J., Liao, Y. Y., Guo, H. R., & Chen, K. T. (2013). Acute poisoning with neonicotinoid insecticides: a case report and literature review. Basic & Clinical Pharmacology & Toxicology, 112, 282-286.

Logeswari, P., Silambarasan, S., & Abraham, J. (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society, 19, 311-317.

Mallikarjuna, K., Sushma, N. J., Narasimha, G., Manoj, L., & Raju, B. D. P. (2014). Phytochemical fabrication and characterization of silver nanoparticles by using Pepper leaf broth. Arabian Journal of Chemistry, 7, 1099-1103.

Manjumeena, R., Duraibabu, D., Sudha, J., & Kalaichelvan, P. (2014). Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: an enhanced eco-friendly water disinfection approach. Journal of Environmental Science and Health, Part A, 49, 1125-1133.

Marchiol, L. (2012). Synthesis of metal nanoparticles in living plants. Italian Journal of Agronomy, e37-e37.

Mata, A., Palmer, L., Tejeda-Montes, E., & Stupp, S. I. (2012). Design of biomolecules for nanoengineered biomaterials for regenerative medicine. Nanotechnology in Regenerative Medicine. Springer.

Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10, 507-517.

Monteiro, D. R., Gorup, L. F., Takamiya, A. S., Ruvollo-Filho, A. C., De Camargo, E. R., & Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34, 103-110.

Mori, Y., Tagawa, T., Fujita, M., Kuno, T., Suzuki, S., Matsui, T., & Ishihara, M. (2011). Simple and environmentally friendly preparation and size control of silver nanoparticles using an inhomogeneous system with silver-containing glass powder. Journal of Nanoparticle Research, 13, 2799-2806.

Mueller, N. C., & Nowack, B. (2008). Exposure modeling of engineered nanoparticles in the environment. Environmental Science & Technology, 42, 4447-4453.

Nam, G., Purushothaman, B., Rangasamy, S. & Song, J. M. (2016). Investigating the versatility of multifunctional silver nanoparticles: preparation and inspection of their potential as wound treatment agents. International Nano Letters, 6, 51-63.

Nasrollahzadeh, M. (2014). Green synthesis and catalytic properties of palladium nanoparticles for the direct reductive amination of aldehydes and hydrogenation of unsaturated ketones. New Journal of Chemistry, 38, 5544-5550.

Nisha, S. N., Aysha, O., Rahaman, J. S. N., Kumar, P. V., Valli, S., Nirmala, P., & Reena, A. (2014). Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124, 194-198.

NNI. (2020). National Nanotechnology Initiative [Online]. Available: https://www.nano.gov/nanotech-101/what [Accessed].

Novikov, S. M., Popok, V. N., Evlyukhin, A. B., Hanif, M., Morgen, P., Fiutowski, J., Beermann, J., Rubahn, H.-G.
N., & Bozhevolnyi, S. I. (2017). Highly stable monocrystalline silver clusters for plasmonic applications. Langmuir, 33, 6062-6070.

Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823-839.

Pantidos, N., & Horsfall, L. E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine & Nanotechnology, 5, 1.

Parisi, C., Vigani, M., & Rodríguez-Cerezo, E. (2015). Agricultural nanotechnologies: what are the current possibilities? Nano Today, 10, 124-127.

Parsons, J., Peralta-Videa, J., & Gardea-Torresdey, J. (2007). Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Developments in Environmental Science, 5, 463-485.

Patnaik, S., Sahoo, D. P., & Parida, K. (2018). An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications. Renewable and Sustainable Energy Reviews, 82, 1297-1312.

Patra, J. K., & Baek, K.-H. (2017). Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Frontiers in Microbiology, 8, 167.

Paulkumar, K., Gnanajobitha, G., Vanaja, M., Rajeshkumar, S., Malarkodi, C., Pandian, K., & Annadurai, G. (2014). Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. The Scientific World Journal, 2014.

Pérez-López, B., & Merkoçi, A. (2011). Nanomaterials based biosensors for food analysis applications. Trends in Food Science & Technology, 22, 625-639.

Pfleger, J., Smejkal, P., Vlckova, B., & Slouf, M. (2003). Preparation of Ag nanoparticles by two-wavelength laser ablation and fragmentation. Advanced Organic and Inorganic Optical Materials. International Society for Optics and Photonics, 198-205.

Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., & Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific Journal of Tropical Biomedicine, 2, 574-580.

Poulose, S., Panda, T., Nair, P. P., & Theodore, T. (2014). Biosynthesis of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 14, 2038-2049.

Praba, P. S., Jeyasundari, J., & Jacob, Y. B. A. (2014). Synthesis of silver nano particles using Piper betle and its antibacterial activity. Eur Chem Bull, 3, 1014-1016.

Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2, 1-10.

Prabu, H. J., & Johnson, I. (2015). Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala International Journal of Modern Science, 1, 237-246.

Pugazhendhi, A., Prabakar, D., Jacob, J. M., Karuppusamy, I., & Saratale, R. G. (2018). Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microbial Pathogenesis, 114, 41-45.

Rajakumar, G., & Rahuman, A. A. (2011). Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Tropica, 118, 196-203.

Robinson, R. K., & Batt, C. A. (2014). Encyclopedia of Food Microbiology, Elsevier Science.

Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B., & Roullet, J.-B. (2008). Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. Journal of Antimicrobial Chemotherapy, 61, 869-876.

Rogach, A. L.(2000). Nanocrystalline CdTe and CdTe (S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Materials Science and Engineering: B, 69, 435-440.

Sajadi, S. M., Kolo, K., Hamad, S. M., Mahmud, S. A., Barzinjy, A. A., & Hussein, S. M. (2018). Green Synthesis of the Ag/Bentonite Nanocomposite UsingEuphorbia larica Extract: A Reusable Catalyst for Efficient Reduction of Nitro Compounds and Organic Dyes. ChemistrySelect, 3, 12274-12280.

Saratale, G. D., Saratale, R. G., Benelli, G., Kumar, G., Pugazhendhi, A., Kim, D.-S., & Shin, H.-S. (2017). Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. Journal of Cluster Science, 28, 1709-1727.

Sathishkumar, G., Gobinath, C., Wilson, A., & Sivaramakrishnan, S. (2014). Dendrophthoe falcata (Lf) Ettingsh (Neem mistletoe): A potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128, 285-290.

Shankar, P. D., Shobana, S., Karuppusamy, I., Pugazhendhi, A., Ramkumar, V. S., Arvindnarayan, S., & Kumar, G. (2016). A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme and Microbial Technology, 95, 28-44.

Shankar, S. S., Ahmad, A., & Sastry, M. (2003). Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress, 19, 1627-1631.

Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2005). Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials, 17, 566-572.

Sharma, K., Singh, G., Kumar, M., & Bhalla, V. (2015). Silver nanoparticles: facile synthesis and their catalytic application for the degradation of dyes. RSC Advances, 5, 25781-25788.

Sharma, P., & Bhargava, M. (2013). Applications and characteristics of nanomaterials in industrial environment. Research and Development (IJCSEIERD), 3, 63-72.

Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., & Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18, 225103.

Skirtach, A. G., Antipov, A. A., Shchukin, D. G., & Sukhorukov, G. B. (2004). Remote activation of capsules containing Ag nanoparticles and IR dye by laser light. Langmuir, 20, 6988-6992.

Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177-182.

Song, J. Y., & Kim, B. S. (2008). Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean Journal of Chemical Engineering, 25, 808-811.

Talabani, R. F., Hamad, S. M., Barzinjy, A. A., & Demir, U. (2021). Biosynthesis of Silver Nanoparticles and Their Applications in Harvesting Sunlight for Solar Thermal Generation. Nanomaterials, 11, 2421.

Tarafdar, J., Sharma, S., & Raliya, R. (2013). Nanotechnology: Interdisciplinary science of applications. African Journal of Biotechnology, 12.

Tien, D., Liao, C., Huang, J., Tseng, K., Lung, J., Tsung, T., Kao, W., Tsai, T., Cheng, T., & Yu, B. (2008). Novel technique for preparing a nano-silver water suspension by the arc-discharge method. Rev. Adv. Mater. Sci, 18, 750-756.

Tran, Q. H., & Le, A.-T. (2013). Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 033001.

Van Duyne, R. P., Haes, A. J., & Mcfarland, A. D. (2003). Nanoparticle optics: fabrication, surface-enhanced spectroscopy, and sensing. Physical Chemistry of Interfaces and Nanomaterials II, 5223, 197-207.

Varghese, R. A., Anandhi, P., Arunadevi, R., Boovisha, A., Sounthari, P., Saranya, J., Parameswari, K., & Chitra, S. (2015). Satin leaf (Chrysophyllum oliviforme) extract mediated green synthesis of silver nanoparticles: antioxidant and anticancer activities. Journal of Pharmaceutical Sciences and Research, 7, 266.

Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E. F. C., Jeyakumar, N., & Dhanaraj, S. A. (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 15, 113-120.

Venugopal, K., Ahmad, H., Manikandan, E., Arul, K. T., Kavitha, K., Moodley, M., Rajagopal, K., Balabhaskar, R., & Bhaskar, M. (2017a). The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines. Journal of Photochemistry and Photobiology B: Biology, 173, 99-107.

Venugopal, K., Rather, H., Rajagopal, K., Shanthi, M., Sheriff, K., Illiyas, M., Rather, R., Manikandan, E., Uvarajan, S., & Bhaskar, M. (2017b). Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. Journal of Photochemistry and Photobiology B: Biology, 167, 282-289.

Vidhu, V., Aromal, S. A., & Philip, D. (2011). Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83, 392-397.

Vijayakumar, M., Priya, K., Nancy, F., Noorlidah, A., & Ahmed, A. (2013). Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Industrial Crops and Products, 41, 235-240.

Wiley, B. J., Im, S. H., Li, Z.-Y., Mclellan, J., Siekkinen, A., & Xia, Y. (2006). Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. ACS Publications.

Xi, G., Keep, R. F., & Hoff, J. T. (2006). Mechanisms of brain injury after intracerebral haemorrhage. The Lancet Neurology, 5, 53-63.

Yeo, C. I., Choi, J. H., Kim, J. B., Lee, J. C., & Lee, Y. T. (2014). Spin-coated Ag nanoparticles for enhancing light absorption of thin film a-Si: H solar cells. Optical Materials Express, 4, 346-351.

Zahir, A. A., Bagavan, A., Kamaraj, C., Elango, G., & Rahuman, A. A. (2012). Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. Journal of Biopesticides, 5, 95.

Zielińska, A., Skwarek, E., Zaleska, A., Gazda, M., & Hupka, J. (2009). Preparation of silver nanoparticles with controlled particle size. Procedia Chemistry, 1, 1560-1566.