Effect of Valence Electron Concentration in High Entropy Shape Memory Alloys/ Review

Authors: Sivar Aziz Baiz1 & Pshdar Ahmed Ibrahim2
1Department of Physics Education, Faculty of Education, Tishk International University, Erbil, Iraq
2Firat University, Faculty of Science, Department of Physics, Elazig, Turkey

Abstract: The shape memory effect is the ability to recover the shape after deformation on heating or stress. High entropy alloys were found by mixing an equiatomic number of complex components; nowadays, a new generation of un equiatomic components are produced. Properties like high strength and slow diffusion are properties of HEAs, and these properties are perfect circumstances for the appearance of the martensitic diffusionless transformation. Combining these two properties of alloy in a new class called high entropy shape memory alloys (HESMAs) opens a door for many new applications in terms of shape recovery and deformation resistance. This paper reviews the combination of (HE and SMA) properties in an alloy, VEC was found for all the different compositions of HESMAs, and the focus is to see how VEC affects this new family of alloys. Configurational entropy of the compositions was all calculated, and the values are mostly greater than 1.5R.

Keywords: VEC, HESMA, High Entropy Alloys (HEAs), Shape Memory Alloy (SMA), Shape Memory Effect (SME)

Download the PDF Document

doi: 10.23918/eajse.v7i1p246


Baiz, S. A., Canbay, C. A., & Ozkul, I. (2018, 2018). The investigation of thermodynamic and structural parameters in Cu-Al-Fe-Mn SMAs. Paper presented at the 34th Turkish physcial society conference.

Buehler, W. J., Gilfrich, J. V., & Wiley, R. C. (1963). Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of Applied Physics, 34(5), 1475-1477. doi:https://doi.org/10.1063/1.1729603

Canbay, C. A., Aziz, S., Özkul, İ., & Dere, A. (2020). The effect of e/a ratio on thermodynamic parameters and surface morphology of Cu–Al–Fe–X shape memory alloys. Journal of Thermal Analysis and Calorimetry, 139(2), 823-829. doi:https://doi.org/10.1007/s10973-019-08454-8

Canbay, C. A., Gudeloglu, S., & Genc, Z. K. (2015). Investigation of the enthalpy/entropy variation and structure of Cu–Al–Mn–Fe shape memory alloys. International Journal of Thermophysics, 36(4), 783-794. doi:10.1007/s10765-015-1842-2

Chang, S.H., Lin, P.T., & Tsai, C.W. (2019). High-temperature martensitic transformation of CuNiHfTiZr high-entropy alloys. Scientific Reports, 9(19598), 1-7. doi:https://doi.org/10.1038/s41598-019-55762-y

Chen, C.H., & Chen, Y.J. (2019). Shape memory characteristics of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy. Scripta Materialia, 162, 185-189. doi:https://doi.org/10.1016/j.scriptamat.2018.11.023

Chen, R., Qin, G., Zheng, H., Wang, L., Su, Y., Chiu, Y., Fu, H. (2018). Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Materialia, 144, 129-137. doi:https://doi.org/10.1016/j.actamat.2017.10.058

Firstov, G., Koval, Y., Van Humbeeck, J., Timoshevskii, A., Kosorukova, T., & Verhovlyuk, P. (2015). Some physical principles of high temperature shape memory alloys design. Paper presented at the Materials Science Foundations, Switzerland.

Firstov, G., Timoshevski, A., Kosorukova, T., Koval, Y., Matviychuk, Y., & Verhovlyuk, P. (2015, 2015). Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation. Paper presented at the Esomat 2015 – 10th European Symposium on Martensitic Transformations.

Firstov, G. S., Kosorukova, T. A., Koval, Y. N., & Odnosum, V. V. (2015). High entropy shape memory alloys. Materials Today: Proceedings, 2, 499-503.

Firstov, G. S., Kosorukova, T. A., Koval, Y. N., & Verhovlyuk, P. A. (2015). Directions for high-temperature shape memory alloys’ improvement: straight way to high-entropy materials? Shape Memory and Superelasticity, 1(4), 400-407. doi: 10.1007/s40830-015-0039-7

Furuya, Y. (1996). Design and material evaluation of shape memory composites. Journal of Intelligent Material Systems and Structures, 7(3), 321-330. doi:https://doi.org/10.1177%2F1045389X9600700313

Guo, S., Ng, C., Lu, J., & Liu, C. T. (2011). Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 109(10), 1-5. doi:10.1063/1.3587228

Jien Wei, Y. J. A. C. S. M. (2006). Recent progress in high entropy alloys. Analytic Chemitry Science Materilas, 31(6), 633-648. doi:10.3166/acsm.31.633-648

Koželj, P., Vrtnik, S., Jelen, A., Jazbec, S., Jagličić, Z., Maiti, S., Dolinšek, J. J. P. R. l. (2014). Discovery of a superconducting high-entropy alloy. Physical Review Letters, 113(10), 1-5. doi:https://dx.doi.org/10.1103/PhysRevLett.113.107001

Lee, H. C., Chen, Y. J., & Chen, C. H. (2019). Effect of solution treatment on the shape memory functions of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy. Entropy, 21(10), 1-14. doi:https://doi.org/10.3390/e21101027

Lee, J. I., Tsuchiya, K., Tasaki, W., Oh, H. S., Sawaguchi, T., Murakami, H., Park, E. S. (2019). A strategy of designing high-entropy alloys with high-temperature shape memory effect. Scientific Repoerts, 9(1), 1-10. doi:https://doi.org/10.1038/s41598-019-49529-8

Ma, J., Karaman, I., & Noebe, R. D. (2010). High temperature shape memory alloys. International Materials Reviews, 55(5), 257-315. doi:https://doi.org/10.1179/095066010X12646898728363

Massalski, T. B. (2010). Comments concerning some features of phase diagrams and phase transformations. Materials Transactions, 51(4), 583-596. doi:https://dx.doi.org/10.2320/matertrans.M2010012

Mizutani, U. (2012). Hume-Rothery rules for structurally complex alloy phases. Mrs Bulletin, 37(2), 169-169. doi:https://doi.org/10.1557/mrs.2012.45

Murty, B. S., Yeh, J. W., Ranganathan, S., & Bhattacharjee, P. (2019). High-entropy alloys: Elsevier.

Otto, F., Yang, Y., Bei, H., & George, E. P. J. A. M. (2013). Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia Acta, 61(7), 2628-2638. doi:https://doi.org/10.1016/j.actamat.2013.01.042

Peltier, L., Lohmuller, P., Meraghni, F., Berveiller, S., Patoor, E., & Laheurte, P. (2020). Investigation and composition characterization of a “NiTi-like” alloy combining high temperature shape memory and high entropy. Shape Memory and Superelasticity, 6, 273-283. doi:https://doi.org/10.1007/s40830-020-00290-2

Piorunek, D., Frenzel, J., Jöns, N., Somsen, C., & Eggeler, G. (2020). Chemical complexity, microstructure and martensitic transformation in high entropy shape memory alloys. Intermetallics, 122(106792), 1-13. doi:https://doi.org/10.1016/j.intermet.2020.106792

Piorunek, D., Oluwabi, O., Frenzel, J., Kostka, A., Maier, H. J., Somsen, C., & Eggeler, G. (2021). Effect of off-stoichiometric compositions on microstructures and phase transformation behavior in Ni-Cu-Pd-Ti-Zr-Hf high entropy shape memory alloys. Journal of Alloys and Compounds, 857(157467), 1-16. doi:https://doi.org/10.1016/j.jallcom.2020.157467

Sheng, G., & Liu, C. T. J. P. i. N. S. M. I. (2011). Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Materilas International, 21(6), 433-446. doi:https://doi.org/10.1016/S1002-0071(12)60080-X

Takeuchi, A., & Inoue, A. J. M. T. (2005). Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 46(12), 2817-2829.

Tsai, M.H., & Yeh, J.W. J. M. R. L. (2014). High-entropy alloys: a critical review. Materials Research Letters, 2(3), 107-123. doi:https://doi.org/10.1080/21663831.2014.912690

Wang, Y. M., & Ma, E. (2004). Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Materials Science and Engineering: A, 375-377, 46-52. doi:https://doi.org/10.1016/j.msea.2003.10.214

Yang, S., Lu, J., Xing, F., Zhang, L., & Zhong, Y. (2020). Revisit the VEC rule in high entropy alloys (HEAs) with high-throughput Calphad approach and its applications for material design-A case study with Al–Co–Cr–Fe–Ni system. Acta Materialia, 192, 11-19. doi:https://doi.org/10.1016/j.actamat.2020.03.039

Yang, X., & Zhang, Y. (2012). Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2-3), 233-238. doi:https://doi.org/10.1016/j.matchemphys.2011.11.021

Yang, X., Zhang, Y., & Liaw, P. J. P. E. (2012). Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Engineering, 36, 292-298. doi:10.1016/j.proeng.2012.03.043

Ye, Y., Wang, Q., Lu, J., Liu, C., & Yang, Y. J. M. T. (2016). High-entropy alloy: challenges and prospects. Materials Today, 19(6), 349-362.

Yeh, J.W. J. J. (2013). Alloy design strategies and future trends in high-entropy alloys. The Minerals, Metals & Materials Society, 65(12), 1759-1771. doi:https://doi.org/10.1007/s11837-013-0761-6

Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advance Engineering Materials, 6(5), 299-303.

Zhang, Y. (2019a). High-Entropy Materials: Springer.

Zhang, Y. (2019b). History of High-Entropy Materials. In High-Entropy Materials (pp. 1-33): Springer.

Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. J. P. i. M. S. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93. doi:https://dx.doi.org/10.1016/j.pmatsci.2013.10.001