Optical and Acoustic Grüneisen Parameter of Nano-sized Particles

Author: Abdulrahman Khaleel Suleiman1
1Department of Physics, College of Science, Salahaddin University, Erbil, Iraq

Abstract:  Theoretical size dependence optical and acoustic Grüneisen parameter γop(r ) and γac(r) at room temperature (300 K) are calculated for Si nanoparticles using modified Debye-Einstein approximation model. The obtained results are used for studying the total Grüneisen parameter γ(θD(r),θE(r)). All parameters forming the model including Debye’s θD (r,T) and Einstein’s θE (r,T) temperatures and lattice volume are calculated according to their nanoscale size dependence. These values θE (r,T) and θD (r,T) for Silicon decrease with decreasing nanoparticle size, except for lattice volume and Grüneisen parameter which increases to about 2.9 times of its bulk lattice volume and total Grüneisen parameter to about 2.45 compared with bulk value when the particle diameter reaches lower than 5 nm.

Keywords: Grüneisen Parameter, Debye’s Temperature, Einstein’s Temperature, Acoustic and Optical Branch, Nanoparticle
Download the PDF Document from here.

doi: 10.23918/eajse.v4i3sip19


Abdullah, B.J., Omar, M.S., & Jiang, Q. J. (2016). Grüneisen Parameter and Its Related Thermodynamic Parameters Dependence on Size of Si Nanoparticles. ZANCO Journal of Pure and Applied Sciences, 28(4), 126-132.

Abdulrahman, K., & Omar, M, (2017), Debye–Einstein approximation approach to calculate the lattice specific heat and related parameters for a Si nanowire. J. Taibah.Univ. for Sci, 11 1226–1231.

Antonov, V M., Milman, V Yu, Nemoshkalenko, V., & Zhalko, V. (1990). Lattice dynamics of FCC transition metals: A pseudopotential approach. Z. Phys. B. Condens Matter, 79, 223.

Ashcroft, N.W.& Mermin N. D. (1987). Solid State Physics (HRW Internat. ed.), W. B. Saunders College Chap. 23.

Bo, L., Mu, G., Xiao-Lin, L., Shi-Ming, H., Chen, N., Ze-Ren, L., & Rong-Bo, W. (2010). First-principles study of lattice dynamics and thermodynamics of osmium under pressure. Chinese Physics B, 19 (2), 026301.

Brulsa, R. J., Hintzena, H.T., de Witha, G., Metselaara, R., & van Miltenburgb J.C. (2001). The temperature dependence of the Grüneisen parameters of MgSiN2, AlN and β-Si3N4. J. Phys and Chem of Solids, 62, 783-792.

Chernyshev, A. P. (2008). Melting of surface layers of nanoparticles: Landau model. Materials Chemistry and Physics, 112 (1), 226-229.

Childress, J.R., Chien, C.L., Zhou, M.Y., & Sheng, P. (1991). Lattice softening in nanometer-size iron particles. Physical Review B, 44 (21), 11689.

Edmonds, D.V., He, K., Rizzo, F.C., De Cooman, B.C., Matlock, D.K. & Speer, J.G. (2006). Quenching and partitioning martensite—A novel steel heat treatment. Materials Science and Engineering: A, 438, 25-34.

Fang, Z. H. (1996). Pressure dependence of the melting temperature of rare-gas solids. Journal of Physics: Condensed Matter, 8 (38), 7067.

Gleiter, H., (2000). Nanostructured materials: basic concepts and microstructure. Acta Materialia, 48 (1), 1-29.

Goldstein, A.N., (1996). The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors. Applied Physics A, 62 (1), 33-37.

Hailstone, R.K., DiFrancesco, A.G., Leong, J.G., Allston, T. D., & Reed, K. J. (2009). A study of lattice expansion in CeO2 nanoparticles by transmission electron microscopy. The Journal of Physical Chemistry C, 113(34), 15155-15159.

Hashimoto, H., & WB, T. (2009). First-principles study on thermodynamic properties of Ti2AlC and Ti2SC. Materials Transactions, 50(9), 2173-2176.

Jiang, Q., Tong, H.Y., Hsu, D.T., Okuyama, K., & Shi, F.G. (1998). Thermal stability of crystalline thin films. Thin Solid Films, 312(1-2), 357-361.

Koga, K., Ikeshoji, T., & Sugawara, K.I. (2004). Size-and temperature-dependent structural transitions in gold nanoparticles. Physical Review Letters, 92(11), 115507.

Lai, S.L., Guo, J.Y., Petrova, V., Ramanath, G., & Allen, L. H. (1996). Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Physical Review Letters, 77 (1), 99.

Licea, I., & Ioanid, A. (2004). Temperature dependence of Grüneisen’s parameters in a solid with polyatomic basis. Journal of Optoelectronics and Advanced Materials, 6, 857-864.

Lu, X.G., Selleby, M., & Sundman, B. (2005). Assessments of molar volume and thermal                 expansion for selected bcc, fcc and hcp metallic elements. Calphad, 29 (1), 68-89.

Moruzzi, V. L., Janak, J.F., & Schwarz, K. (1988). Calculated thermal properties of metals. Physical Review B, 37(2), 790.

Müllejans, H., & Bruley, J. (1995). Electron energy‐loss near‐edge structure of internal interfaces by spatial difference spectroscopy. Journal of Microscopy, 180 (1), 12-21.

Omar, M. S. (2016), Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles. Int J Thermophys, 37,11.

Omar, M.S. (2012). Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials. Materials Research Bulletin, 47 (11), 3518-3522.

Omar, M.S., & Hawkar, T. (2009). Lattice dislocation in Si nanowires. Physica B, 404 5203–5206.

Omar, M. S. (2013), Critical Size Structure Parameters for Au Nanoparticles. Advanced Material Research, 626, 976-679.

Pande, B.K., Pandey, A. K., & Singh, C.K. (2018). Pressure dependent Grüneisen parameter for semiconductors. In AIP Conference Proceedings, 1942(1), 120004.

Pandya, C.V., Vyas, P.R., Pandya, T.C., & Gohel, V.B. (2002). Volume variation of Grüneisen parameters offcc transition metals. Bulletin of Materials Science, 25 (1), 63-67.

Regel, A. R., & Glazov, V.M. (1995). Entropy of melting of semiconductors. Semiconductors, 29, 405-417.

Rycerz, A. (2009). Aharonov-Bohm effect and valley polarization in nanoscopic graphene rings. Acta Phys. Polon., 115, 322-325.

Sadaiyandi, K. (2009). Size dependent Debye temperature and mean square displacements of nanocrystalline Au, Ag and Al. Materials Chemistry and Physics, 115(2-3), 703-706.

Sanditov, D. S., Munkueva, S. B., Batlaev, D. Z., & Sangadiev, S. S. (2012). Grüneisen parameter and propogation velocities of acoustic waves in vitreous solids. Physics of the Solid State, 54 (8), 1647-1643

Scheffler, M., & Biernacki, S. (1989). Negative thermal expansion of diamond and zinc-blende               semiconductors. Physical Review Letters, 63(3), 290.

Shobhana, N., & Scheffler, M. (1997). A model for the thermal expansion of Ag (111) and other metal surfaces. Zeitschrift für Physikalische Chemie, 202 (1-2), 253-262.

Slack, G. A. (1973). Nonmetallic crystals with high thermal conductivity. Journal of Physics and Chemistry of Solids, 34(2), 321-335.

Tang, X., Dong, J., Hutchins, P., Shebanova, O., Gryko, J., Barnes, P., Cockcroft, J.K., Vickers, M. & McMillan, P.F., (2006). Thermal properties of Si 136: theoretical and experimental study of the type-II clathrate polymorph of Si. Physical Review B, 74 (1), 014109.

Vocadlo, L., Poirer, J. P., & Price, G. D. (2000). Grüneisen parameters and isothermal equations of state. American Mineralogist, 85(2), 390-395.

Wang, F., Han, Y., Lim, C.S., Lu, Y., Wang, J., Xu, J., Chen, H., Zhang, C., Hong, M., & Liu, X., (2010). Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature, 463 (7284), 1061.

Xu, C. H., Wang, C. Z.  Chan, C. T., & Ho, K. M. (1991). Theory of the thermal expansion of Si and n. Diamondphys Rev, B.  43, 6.

Yang, C. C., Xiao, M.X., Li, W., & Jiang, Q. (2006). Size effects on Debye temperature, Einstein temperature, and volume thermal expansion coefficient of nanocrystals. Solid-state             Communications, 139 (4), 148-152.

Zhang, Z., Zhao, M., & Jiang, Q. (2001). Melting temperatures of semiconductor nanocrystals in the mesoscopic size range. Semiconductor Science and Technology, 16(6), L33.

Zhao, Y. H., & Lu, K. (1997). Grain-size dependence of thermal properties of nanocrystalline elemental selenium studied by x-ray diffraction. Physical Review B, 56 (22), 14330.