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Abstract:  

A new numerical technique for computing the displacement and internal force is 

presented and applied to the double-layer spherical model. This numerical 

approach takes into consideration the geometrical nonlinear response of the pin-

jointed rigid systems. The presented method performs a practical way of 

employing the large deformation within the elastic limit for analyzing space 

structures. In the proposed technique the nonlinear geometrical response of the 

assembly is modeled and analyzed as a system of algebraic nonlinear equations. 

The Pade approximation method is conducted in the derivation to give a high rate 

of convergent ratio in solving the nonlinear equations. The result is validated 

using the nonlinear finite element software SAP2000 and the linear force method. 

The discrepancies between the proposed technique and SAP2000 analysis results 

for external nodal displacement difference and internal element force difference 

are computed and compared with the linear technique outcomes. The Euclidean 

norm index is also used to test the precision of calculated nonlinear nodal 

displacements. The findings showed more closeness to nonlinear SAP2000 results 

than the linear method.  

 

Keywords: Geometric Nonlinearity; Nonlinear Analysis; Statical Analysis; 
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1. Introduction 

Spheres are always considered unique and elegant geometry for structures [1, 2]. Architects and 

engineers have built a variety of spherical forms all over the world. Many spherical buildings can be 

seen as landmarks, such as Al Wasl Plaza in Dubai in UAE as shown in Figure 1 [3]. Due to the 

geometrical characteristics of spheres, they are used to afford a wide span as a lightweight structure 

with economical choice. When they are affected by specific external loads, they face notable 

deformation [4, 5]. Therefore, they require a very precise computation during the analysis and design 

process considering their geometrical nonlinear behavior [6].  

Many nonlinear analysis techniques have been established for analyzing the nonlinear static and 

dynamic responses of structures. In the early stages when researchers considered the geometric 

nonlinearity behavior, they applied techniques of incremental stiffness, Newton Raphson, and iteration 

procedure [7]. The dynamic relaxation method is one of the popular methods conducted in dealing 

with geometrically nonlinear static analysis at a steady state [8-13]. Improving the tangent stiffness 

matrix in the finite element method is another way for performing nonlinear analysis with geometrical 

consideration [14-17]. Minimum potential energy is an additional different method depending on 

minimizing the total potential energy of the entire set to provide the equilibrium state [18-21]. The 

further analysis technique is the nonlinear force method (NFM). In this approach, the three basic 
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principles which are equilibrium, compatibility, and constitutive relationships are adopted. The 

geometrical nonlinearity can be computed by extending the linear force method [5, 22] to be used in 

the iteration procedure [23, 24], or be used in the specific algorithm [25]. Additionally, Manguri and 

Saeed [26] and Saeed et al. [27] presented an approximate linear force method working on updating 

joint coordinates of the geometrical nodes for the iteration steps using the discretized applied load. 

Kwan [6] proposed a new technique for analyzing prestressed cable systems using the Taylor series 

for expressing geometrical nonlinearity within both the compatibility condition and equilibrium state. 

As a result, the derivation of compatibility and equilibrium matrices came out in a deformed 

configuration. Most of the quoted analysis methods require a very well understanding and regularly 

work with a specific written algorithm or iteration process, which may be time-consuming, or 

sometimes fail in analyzing complex structures [6, 28]. 

In the article, an alternative approach is conducted in analyzing the spherical model which is a 

nonlinear geometrical structure. The proposed technique is based on the nonlinear force method 

expanded using the Pade approximation method. Previously, the Pade approximation method is used 

in prestressing spatial pin-jointed structures by indicating nonlinear member actuation to provide the 

required degree of prestressed force using the flexibility method [29]. This work is carried out to show 

the significance of considering the geometrical nonlinearity behavior for structures experiencing great 

deformability within elastic limits. In addition, the nonlinear finite element analysis SAP2000 software 

is used to validate the proposed technique. Finally, the comparison is made between the nonlinear 

techniques and the linear force method to show the necessity of utilizing nonlinear approaches for 

structures that have geometrical nonlinearity.  

The outline of this paper is arranged as the following. Section 1 briefly introduces nonlinear analysis 

techniques and geometric nonlinearity behavior.    Section 2 is the formulation of the proposed 

technique. In Section 3 the numerical example of the double-layer spherical model is analyzed by the 

proposed technique and SAP2000 software. Finally, the conclusions of the analysis findings are 

presented in Section 4. 

 

Figure 1: Al Wasl plaza spherical structure[3]. 
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2. Geometrical Nonlinear Force Method 

This technique is derived depending on the relation between the exterior nodal displacement and the 

member variation length of the bar element with end nodes 1 and 2 prior to the loading. The nodes of 

the bar element 1-2 displace to 1′-2′ after loading as shown in Figure 2.  

When an assembly is affected by nodal external loads P, it is required to stay at equilibrium with 

internal member force t and the relation between them can be shown as below: 

(1)   Q d t P  

Similarly, the geometrical deformability which is between the external joint displacements d and 

internal member alteration e can be expressed as: 

(2)    C d d e d  

where 
( )Q d

and 
( )C d

are the equilibrium and compatibility matrices after geometrical deformation, 

and ( ) ( )TQ d C d  [30]. 

Since the assumption of a constitutive relationship has no impact on the equilibrium equation and 

compatibility condition, the relation between the matrix of member forces and vector of member length 

alteration can be formulated as: 

(3)   0 e d Ft  

where F is the flexibility matrix. The variation of the member length can be obtained from 'e L L  , 

as well, 
   

2 2
' o o o oL x dx y dy   

 as shown in Figure 2. Where L is the initial member length, 

L′ is the new length of the member and the notation ( )o = ( )2 – ( )1 as shown in Figure 2.  

Now employing the Pade approximation method that is a very powerful mathematical technique to 

attain the numerical solution for e. The Pade approximation is a conventional rational function whose 

extension is pointed to settle with Taylor’s series expansion of the main function as distant as 

conceivable. In most cases, the Pade approximation affords a more improved approximation for the 

original function and could work where Taylor’s series does not converge. Thus, e can be expanded 

and expressed as below [29, 31-33]:  

(4) 
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Once more, considering the large deflection, the equilibrium state between applied load Px and Py and 

the internal axial force t can be given as:  

(5) 
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Figure 2: (a) Original and deformed length of element 1-2 (b) Original and deformed equilibrium 

state of element 1-2 

Now by substituting (4) into (3) we get a system of the nonlinear equations that can be solved using 

any nonlinear solver technique to find out the nodal displacement and internal force for nonlinear 

geometric analysis. Here, we used the fsolve in MATLAB to employ the solution. Later, the Euclidean 

norm ratio is implemented to show the difference ratio of displacement (Rd) between the nonlinear and 

linear displacement as below: 

(6) 2

2

100
nonlinear linear

d

linear

d d
R

d


   

3. Numerical Example 

For apprising the validity of the proposed technique, a very complicated structure is selected. The 

spherical double-layer model [1] shown in Figure 3 is analyzed using the technique presented in the 

previous section. The outer diameter of the sphere is 8m and the distance between both layers is 

200mm. The model consists of 382 nodes, that 21 nodes of the outer layer from the bottom on a 

diameter of 1.174m are pin supports as shown in Figure 4. It has 1520 members. The axial stiffness of 

all the members is 15707963.3 MPa. The model is laterally loaded in the x-direction by 1000 N at 73 

nodes on the outer surface (20-30, 42-50, 62-70, 82-90, 102-110, 122-130, 142-150, 162-170, 381) as 

shown in Figure 4. The lateral loads produced noticeable deformability in all of the x-, y-, and z- 

directions. The results are presented in the following section.  

 

Figure 3: Double-layer spherical model 
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Figure 4: Laterally loaded in (N) double-layer spherical model 

4. Result and Discussion 

The double-layer spherical model is theoretically analysed using the presented approach. The 

maximum axial force for this specifically applied load shown in Figure 4 is located at members 862 as 

45.456 kN, and 857 as -45.456 kN [1]. While the present technique determined tensile 45.282 kN and 

compressive 45.643 kN for members 862 and 857 respectively, which are almost equal to the SAP2000 

results with values 45.281 kN, -45.642 kN for the same members. Likewise, to show the difference of 

maximum member forces between the present approach and SAP2000 analysis (SNF) and also 

between linear technique and SAP2000 findings (SLF) the force discrepancy is shown in Figure 5. The 

difference value between nonlinear techniques (SNF) is 0.001, while for SLF is 0.175 for member 862 

and 0.186 for member 857. These similarities between nonlinear techniques are due to the impact of 

geometrical stiffness on the member force computation and vice versa.  

The analysis results for the displaced selected nodes in the x-, y-, and z-directions via applying the 

current technique are presented in columns 2-4 of Table 1. Similarly, the model was analyzed by 

nonlinear finite element analysis using SAP2000. The findings are presented in columns 5-7 of Table 

1. Both nonlinear analysis results are in very well agreement with each other. Later, they compared 

with linear analysis result by Mahmood, et al. [1] as shown in columns 8-10 of Table 1. The Euclidean 

norm ratio as in (4) is used to find out the difference rate between the nonlinear displacement and the 

linear displacement. The difference rate is about 0.11%, and this rate will increase when the model 

faces greater loading values for the same loading condition. Moreover, the difference in resultant 

displacements between the SAP2000 and present technique SND and also between SAP2000 and 

linear technique SLD are identified and presented in Figure 6. The difference between the nonlinear 

techniques SND is barely noticeable for all joints that its maximum amount is 0.002. While the 

difference of SLD is clearly visible that its maximum difference amount is 0.146 which is refer to 

neglecting the effect of geometric nonlinearity.  

Considering most systems of geometrical nonlinear behavior response provide more precision outputs, 

particularly when they are experiencing large deformability.   
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Figure 5: Difference of maximum member forces of SNF and SLF 

Table 1: Nodal Displacement of Double-layer Spherical Model 

Nodes 
Present Technique (mm) SAP2000 (mm) Linear FM [1] (mm) 

dx dy dz dx dy dz dx dy dz 

1-20 0 0 0 0 0 0 0 0 0 

25 11.358 -1.018 -6.250 11.358 -1.018 -6.250 11.38 -1.05 -6.05 

30 8.998 2.336 18.533 8.998 2.336 18.534 8.85 2.37 18.64 

35 7.197 0.172 5.817 7.197 0.172 5.817 7.17 0.25 6.04 

40 7.308 -1.587 -18.715 7.308 -1.587 -18.716 7.45 -1.57 -18.59 

45 23.494 -0.691 -10.299 23.494 -0.691 -10.299 23.54 -0.68 -10.08 

50 22.454 2.758 30.767 22.454 2.758 30.768 22.26 2.81 31.00 

55 16.828 1.279 9.746 16.828 1.279 9.747 16.78 1.38 10.04 

60 19.757 -3.576 -31.181 19.757 -3.576 -31.181 19.93 -3.52 -30.90 

70 34.887 3.567 36.626 34.888 3.568 36.627 34.67 3.65 36.93 

80 31.494 -4.300 -37.191 31.494 -4.300 -37.192 31.69 -4.22 -36.84 

90 47.886 4.000 38.591 47.886 4.000 38.591 47.66 4.12 38.96 

95 41.137 1.403 12.228 41.138 1.403 12.229 41.06 1.52 12.65 

100 44.200 -4.541 -39.362 44.201 -4.541 -39.362 44.40 -4.43 -38.94 

105 63.144 -1.367 -12.450 63.145 -1.367 -12.450 63.19 -1.22 -12.04 

110 60.772 3.907 36.623 60.774 3.907 36.624 60.56 4.05 37.06 

115 54.336 1.293 11.570 54.336 1.294 11.571 54.26 1.44 12.06 

120 57.216 -4.412 -37.603 57.217 -4.412 -37.604 57.40 -4.27 -37.12 

125 74.310 -1.252 -10.691 74.312 -1.252 -10.691 74.35 -1.08 -10.22 

130 72.188 3.362 30.946 72.190 3.362 30.947 72.01 3.53 31.44 

135 66.665 1.075 9.699 66.667 1.075 9.699 66.60 1.25 10.24 

140 69.163 -3.867 -32.075 69.165 -3.867 -32.076 69.31 -3.70 -31.54 

145 82.627 -1.016 -7.927 82.628 -1.016 -7.927 82.65 -0.82 -7.40 

150 81.001 2.439 22.185 81.002 2.439 22.185 80.86 2.63 22.73 

155 76.954 0.745 6.800 76.955 0.745 6.800 76.90 0.94 7.39 

160 78.835 -2.935 -23.343 78.837 -2.935 -23.343 78.94 -2.74 -22.76 

165 87.320 -0.669 -4.435 87.322 -0.669 -4.435 87.32 -0.46 -3.86 

170 86.371 1.238 11.259 86.373 1.238 11.259 86.29 1.44 11.84 

175 84.205 0.288 3.218 84.207 0.288 3.219 84.16 0.49 3.82 

180 85.201 -1.678 -12.411 85.203 -1.678 -12.411 85.24 -1.47 -11.81 

382 87.747 -0.211 -0.601 87.749 -0.211 -0.601 87.73 0 0 
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Figure 6: Differences of resultant displacement obtained through nonlinear and linear force methods 

with respect to SAP2000. 

5. Conclusion 

The newly derived nonlinear geometrical analysis force method is proposed and applied to the double-

layer spherical structure. Likewise, the same model was analyzed using the nonlinear finite element 

software SAP2000 to verify the computed technique. The outcome displacements and maximum axial 

forces are compared with the linear technique. The rate of Euclidean norm index between the vectors 

of nonlinear and linear resultant joint displacements came out as 0.11%. That causes of minimizing 

the cost function due to geometrical stiffness consideration for that applied loading condition.  The 

maximum discrepancy for both of the displacement and member force between nonlinear analysis 

results are 0.002 and 0.001 respectively. However, these discrepancy values came out as 0.146 for 

displacement differences, and 0.175 and 0.186 for tensile and compressive force differences when 

compared to the linear approach. The results showed the applicability of the technique in analyzing 

such a complex structure by concerning the nonlinear behavior of the structures. The employment of 

the Pade approximation method in expanding the nonlinear member variation and internal force 

components provided a very convergeable function in solving the nonlinear equations. 
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