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Abstract:  

Contemporarily, one of the most pressing concerns is reliable and rapid weather 

forecasting. In Nepal, the Department of Hydrology and Meteorological uses a 

numerical modeling approach to forecast the weather, which is tardy and 

requires high-end equipment to process the information, so a deep learning 

approach will be the best alternative. This project aims to forecast the next 2-

hour Precipitation and Air Temperature for Pokhara Domestic Airport 

meteorological station and the next day's Precipitation, Maximum and Minimum 

Air Temperature forecast for Lumle, Begnas, and Lamachaur meteorological 

station, total of four meteorological stations of the Kaski District, Nepal using 

Long Short-Term Memory (LSTM): a Recurrent Neural Network (RNN) and 

deploy the outputs through the web portal. The four hourly parameters: Rainfall, 

Relative Humidity (R.H), Wind Speed, and Air Temperature, were used for 

modeling the airport station forecast, whereas Rainfall, Relative Humidity 

(R.H), Maximum and Minimum Temperature were used for modeling the 

Begnas and Lumle station forecast and only Precipitation data was used for 

Lamachaur station. Averaging and linear interpolation techniques were used to 

fill out the missing values and outliers were detected using Box Plot and replaced 

with threshold value for each parameter. Stochastic Gradient Descent and Adam 

optimizer are used to optimize the LSTM model. Among all the models 

prepared, Root Mean Square Error (RMSE) values range from 0.58 to 4.08 for 

the precipitation model and from 0.16 to 0.82 for the air temperature model, and 

Mean Absolute Error (MAE) values range from 0.21 to 2.87 for the precipitation 

model and from 0.12 to 0.64 for air temperature model were the values of the 

final model that indicates better accuracy for air temperature. The R² values 

range from 0.89 to 0.99, indicating the train and test data were fitted to the model 

really well. 

 

Keywords: Weather Forecast; Deep Learning; Long Short-Term Memory 

(LSTM); Meteorological Data; Precipitation; Air Temperature 

 

1. Introduction 

Weather is defined as a persistent, multidimensional, dynamic, and data-intensive process that is 

characterized by variables such as temperature, humidity, precipitation, wind, and cloud cover at a 

specific time and place [1], which shows the atmospheric status of the Earth at different times and 

places. Knowing the weather extremities such as cyclones, thunderstorms, flooding, and heavy rains 

[2] in the past will help to avoid and mitigate them with less loss. In the context of Nepal, the 72- hour 

based short-range weather forecasting system was initiated by using the Numeric Weather Prediction 

(NWP) system and has been delivering a periodical Climate Bulletin to the public through its website 

(https://www.dhm.gov.np/bulletins) [3]. In Nepal, observed weather parameter was provided by 6 

aero-synoptic, 9 synoptic, 20 sediments, 22 agro-meteorological, 68 climatic, 154 hydro-metric, and 

337 precipitation stations [4].  

https://eajse.tiu.edu.iq/submit/
https://doi.org/10.23918/eajse.v10i2p02
mailto:sdhital@crimson.ua.edu
https://creativecommons.org/licenses/by-nc/2.0/
https://creativecommons.org/licenses/by-nc/2.0/
https://orcid.org/0000-0002-9535-8544
https://orcid.org/0009-0002-7630-9605
https://orcid.org/0009-0001-0203-9262
https://orcid.org/0009-0009-9154-9683
https://creativecommons.org/


Eurasian J. Sci. Eng., 10(2) (2024), 16-33                                                                                                                 17 

 

Due to the diverse changes in geological terrains, rapid urbanization, and climate change, the 

prediction of precipitation is getting more complex and has a high chance of containing ambiguity [5]. 

Precipitation prediction plays a vital role in the simulation of hydrological activity, so predicting the 

precipitation to analyze several geomorphological activities [6] is also a vital application. Melting the 

glaciers in the Himalayas, probabilities of extreme weather conditions, and several natural disasters 

may occur due to the rising temperature [7], which is so devastating. Air temperature plays a crucial 

impact in measuring the greenhouse effect, solar radiation estimations, air pollution [8], [9], and so 

many other effects, so knowing it primarily helps to mitigate the various problems. Air temperature 

and precipitation, basically rapid weather forecasting, is a very crucial climatic factor required for 

many different applications in domains like energy, industry, environment, tourism, agriculture, etc 

[10]. Different empirical practices have also been done in the field of weather forecasting to obtain 

accurate results because their high accuracy and reliability in analyzing dataset patterns are exceptional 

[11], [12].  

 Machine learning is an artificial intelligence type that can help to make predictions based on new data 

without needing human help. There are lots of applications which has good models for predicting 

weather using machine learning(ML) because ML models are capable of finding complex patterns 

[13], [14]such as classification, regression, and time series analysis. Artificial Intelligence (AI) has 

largely supplanted the traditional Numerical Weather Prediction (NWP) forecasting approach, which 

had been followed by Nepal. Various research has been done for predicting the daily, monthly, and 

annual rainfall prediction by using data mining techniques [15], [16], [17] machine learning algorithms 

[18], [19] and so many deep learning algorithms and methods [20], [21], [22], [23] as well as several 

works have been done for air temperature too. Most of the research has been done on predicting the 

daily [24], [25], [26], and very little research has been done prediction on hourly temperature using 

machine learning and deep learning techniques [27], [28], [29]. There were several research [20], [29], 

[30] that concluded that machine and deep learning to predict air temperature or precipitation by using 

sequential or time series data, deep learning, particularly Recurrent Neural Network type Long short-

term memory (LSTM) gives the more precise and accurate result. On the basis of these research 

findings, we use LSTM to model the forecasting precipitation and temperature among the different 

stations. As much as co-variate parameters are available, the result is significantly improved [31]. 

Weather forecasting maintains the quality of life by mitigating the economic crisis and promoting 

better public health. The safety and well-being of humanity are highly impactable by weather changes 

[32]. RNNs are explored for meteorological time series [33] and use feedback connections that enable 

them to retain data that is previously fetched into their architecture. The architecture of RNN has a 

limitation of its inability to learn and make long-term forecasts [34]. LSTM is a type of ANN with 

memory cells that control the flow of information into and out of its cells, which have been created to 

overcome the limitations of RNN [35]. Paper [36] suggests that LSTM is superior to other neural 

networks for multi-step ahead predictions.  

The short term weather forecasting, often called nowcasting, which is very crucial for decision-making 

in the field of weather. Nowcasting informs operations has a wide horizon of applications, including 

emergency response, energy management, flood-warning systems, air traffic control, and so many 

others [37]. Ensemble numerical weather prediction (NWP) systems, which are very computationally 

extensive, simulate the physical equations of the atmospheric parameters to generate the forecastings, 

but when the time is shorter for nowcasting, the accuracy of that result tends to be poor [38], [39]. As 

a result, alternative methods that have good command in making predictions are needed ans, especially 

precipitation forecasting is based on radar data with high spatial and temporal resolution. But, in those 

places where radar data is not available then, relying on gauge station data is the only option. Weather 

forecasting has now entered the era of big data to make the system more advanced, and the volume of 
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ground data makes more robust predictions by adopting deep-learning-based techniques rather than 

traditional computational intelligence [40].  The main objective of this research is to fit the parameters 

into the LSTM model and, with the help of this model, forecast the precipitation and air temperature 

of the stations using time series forecasting of the deep learning approach. 

2. Study Area 

Kaski is located at latitude 28◦18′19′′ N and 84◦4′37′′ E, with an altitude that varies from the lowest 

land range of 450 meters to the highest Himalayan range of 8091 meters [41]. Pokhara is the 

administrative headquarters of the Kaski district, which covers an area of 2,017 square km. In general, 

a lot of rain falls from May to September, among which the wettest month is July and the driest month 

is November, with 402 mm (15.8 inches) and 9 mm (0.4 inches) of precipitation, respectively, whereas 

the annual average precipitation of Kaski is 1620 mm (63.8 inches). Similarly, the average annual 

Maximum and minimum precipitation ranges between 20° Celsius and 7° Celsius, with June being the 

warmest month, with 25° Celsius on average, and January being the coolest month, with 12° Celsius 

on average [42]. The study stations are visualized in Figure. 

 

Figure 1: Study Area Map of Meteorological Stations in Kaski District. 

Geographic coordinates of the meteorological stations of the study area are shown in Table 1 

Table 1: Stations Geographic Details. 

SN Stations Name District Latitude Longitude Elevation(m) 

1 Pokhara Domestic Airport Kaski 28.20 83.97 827 

2 Lumle Station Kaski 28.29 83.81 1738 

3 Begnas Station Kaski 28.16 84.08 682 

4 Lamachaur Station Kaski 28.26 83.96 991 
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3. Methodology  

The basic workflow for this project is collection of dataset, preprocess this dataset to make applicable 

to feed into the model and fit this dataset into the model with different layers and hyperparameters. 

The   Figure 2 gives the figurative insights of this project workflow. 

 

Figure 2: The methodology followed in this research. 

3.1 Data Collection  

The past weather dataset of four stations was collected from the meteorological regional office in 

Pokhara, Kaski. Pokhara Domestic Airport only has a dataset of hourly temporal resolution, and the 

rest of the stations were limited to the daily dataset. The entire dataset used in this research is 

mentioned in Table 2. Here, the station types, the period that we take for the modeling, and information 

on the parameters of the respective station were clearly mentioned.  

Table 2: Descriptions of Dataset of Different Meteorological Stations used in this study. 
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1 Pokhara 

Airport 

AeroSynoptic Hourly Precipitation(mm), Air 

Temperature (d. C), 

R.H(%), Wind 

Speed(m/s) 

From 2019-11-11 

To 2023-04-16 

 

30051 

2 Lumle 

Station 

Agro Meteoro-

logical 

Daily Precipitation(mm), 

Max. and Min. 

Temperature (d. C), 

R.H(%), Wind Speed 

(Knot) 

From 2010-01-01 

To 

2023-04-16 

4852 

3 Begnas 

Station 

Climatological Daily Precipitation(mm), Max 

and Min Temperature 

(d. C), R.H(%) 

From 2010-01-01 

To 

2022-12-31 

4749 

4 Lamachaur 

Station 

Precipitation Daily Precipitation(mm) From 2010-01-01 

To 

2023-04-16 

4852 

 
The sample dataset which had used for the modeling to forecast was mentioned in Table 3 and  

Data Collection from

DHM Regional office,

Pokhara Nepal

Finding/Handling

Outliers

Data Cleaning and

Smoothing

Handling Missing Values

using Interpolation and

Statistical Mean

Modeling using

LSTM

Accuracy

Assessment

Univariate and

Multivariate Analysis

(Single/Multistep)

Deploying the

LSTM Model

Launching the

Weather Portal

Using Statistical

Measure: RMSE,

MAE, R2

Using Adam and SGD

optimizer, Several Layers

Data Collection and Pre-Processing Modeling Visualization
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Table 4. 

Table 3: Sample Hourly data of Pokhara Domestic Airport Station. 

Time Stamp Precipitation 

(mm) 

Air Temperature 

(°C) 

Relative Humidity 

(%) 

Wind speed 

(m/s) 

11/11/2019 6:00 0 23.4 69.399 2.4 

11/11/2019 7:00 0 24.3 64.7 2.5 

 
Table 4: Sample daily dataset of Lumle, Begnas and Lamachaur Meteorological Stations. 

Time Stamp Sample Data of Lumle and Begnas Station Lamachaur 

Precipitation 

(mm) 

Max 

Temperature 

(°C) 

Min 

Temperature 

(°C) 

Relative 

Humidity 

(%) 

Precipitation 

(mm) 

01/01/2015 

3:00 

0 15 8 32.9 0.0 

02/01/2015 

3:00 

29 12.5 7 95.9 19.6 

 
All the timestamps mentioned in the dataset are in UTC (GMT+5:45) format. 

3.2 Data Preprocessing 

The original dataset contained 4.85% of missing data (precipitation 2.289290%, air temperature 

1.087413%, relative humidity 1.083597%, wind speed 1.09122%) in the hourly data set. Similarly, in 

Begnas station 4.28% of data was found missing, and in Lumle and Lamachaur station contain few 

number of missing data. The outliers were detected using the boxplot, and replace these outliers by 

using pandas with the threshold value, which was assumed by analyzing the boxplot. The threshold is 

set in this preprocessing to remove the peak values of the parameters because one extremely high or 

low value has a significant influence on the model. Outliers can sometimes occur while reporting gauge 

readings manually, and even sometimes, there might be extreme weather events, sensor malfunction, 

siting issues, low-cost sensors, etc, which significantly impact modeling [43]. Linear interpolation is 

applied for missing value treatment whereas in case of missing precipitation, fill with zero. The 

comparison between before and after removing noise data using a box plot of Pokhara airport data as 

a sample is shown in Figure 3. In Figure 3 (a), the dataset contains noises, and this affects the outcome, 

so we need to omit this dataset. So, as a result, 3(b), which was created by applying a threshold, 

contains no noise data. 
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Figure 3: (a) contains the noise and (b) contains the without noise data of Pokhara Domestic Airport 

Hourly Data frame. 

The Pearson correlation matrix was analyzed among the different parameters so that this will provide 

more in-depth insights into the positive and negative correlation between them, which is very crucial 

for forecasting.  

Figure 4(a) shows the impact between wind speed and relative humidity and air temperature with 

relative humidity are negatively correlated, whereas for daily station parameters, i.e.,  

Figure 4 (b) and  

Figure 4 (c), minimum temperature and relative humidity influences have negative relation and rest of 

the parameters have positive correlation.  Paper [44] also concludes that windspeed and minimum 

temperature have a significant impact on forecasting rainfall. 

 
 

Figure 4: Correlations between the parameters in respective meteorological stations containing 

several parameters. 

3.3 Modeling using Long Short-Term Memory (LSTM) 

3.3.1 Architecture of Model 

Long Short-Term Memory (LSTM) is an artificial neural network used in deep learning. Artificial 

Neural Network (ANN) is used for forecasting because of its versatility and capabilities based on past 

knowledge [45]. LSTM includes the layer of gates (the cell state eq.4 is managed by the input gate 

eq.1 and forget gate eq.2, which is long term memory and the output gate eq.3 produces the output 

vector eq.5, which is the memory system that enables to remember a long time) that allows the passing 

of data through a multi-step process to enable the recognition of patterns [46] which can be seen clearly 

in the basic architecture of the model in figure 5. 

(a) (b)

(c)(b)(a)
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(1)      𝑖𝑡 = σ(𝑊𝑖𝑥𝑥𝑡 + 𝑈𝑖ℎℎ𝑡−1 + 𝑏𝑖) 

(2)     𝑓𝑡 = σ(𝑊𝑓𝑥𝑥𝑡 +𝑈𝑓ℎℎ𝑡−1 + 𝑏𝑓) 

(3)    𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ tanh(𝑊𝑐𝑥𝑥𝑡 +𝑈𝑐ℎℎ𝑡−1 + 𝑏𝑐) 

(4)     ot  =  σ(Woxxt  +  Uohht−1  +  bo) 

(5)      ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝑐𝑡) 

 

Figure 5: The architecture of the normal LSTM model [47] 

The hourly precipitation and average air temperature for Pokhara Airport station were modeled using 

multivariate multistep LSTM, while daily precipitation, minimum and maximum air temperature for 

Lumle and Begnas station were modeled using multivariate LSTM and the daily precipitation of 

Lamachaur station was modeled using univariate LSTM. All the datasets were normalized using the 

respective scaler as shown in Table, and the training testing dataset was split in the ratio of 80:20 

percentage, which is 24021 and 6005 training and testing datasets, respectively, for Pokhara airport 

hourly data whereas a 70:30 percentage ratio was taken for rest of the daily data stations, i.e., 3396 

and 1456 training and testing datasets respectively 

Table 5: Final modeling details of all station weather models. 

Models Trainable 

Parameters 

Normalization 

Scaler 

Layers Optimizer 

Pokhara Airport Hourly 

Temperature 

332,034 StandardScaler Bidirectio-nal 

LSTM 

Adam (learning 

rate=.001) 

Pokhara Airport Hourly 

Precipitation 

1,208,641 MinMaxScaler LSTM SGD 

(momentum=0.95) 

Lumle Minimum Air 

Temperature 

1,130,657 MinMaxScaler LSTM SGD 

(momentum=0.9) 

Lumle Maximum Air 

Temperature 

1,130,657 MinMaxScaler LSTM SGD 

(momentum=0.9) 

Lumle Precipitation 89,249 MinMaxScaler LSTM SGD 

(momentum=0.9) 

Begnas Minimum Air 

Temperature 

89,249 MinMaxScaler LSTM SGD 

(momentum=0.95) 

Begnas Maximum Air 

Temperature 

89,249 MinMaxScaler LSTM SGD 

(momentum=0.95) 

Begnas Daily 

Precipitation 

30,881 MinMaxScaler LSTM SGD 

(momentum=0.85) 
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Lamachaur Precipitation 88,225 MinMaxScaler LSTM SGD 

(momentum=0.8) 

Figure 6: LSTM architecture of different nine models a) Pokhara airport hourly temperature model, 

b) Pokhara airport hourly temperature model, c) Lumle minimum temperature model, d) Lumle 

maximum temperature model, e) Lumle Precipitation model, f) Begnas minimum temperature 

model, g) Begnas maximum temperature model, h) Begnas precipitation model and i) Lamachaur 

precipitation model 

In the Pokhara airport station, hourly modeling sliding window techniques were followed as it contains 

a large number of the dataset and passed 24 sets of data at once, which contains all the parameters in 

the normalized form to forecast the precipitation and air temperature for the next 2 hours whereas in 

another daily forecast, the lag feature is introduced to the data frame as a new column which shifts 

one-day target data to the future and trains the model with single day dataset to forecast the next day 

value. Lag features are very inappropriate for processing temporal information like time series 

forecasting [48], and it is the values of the previous time steps that will be valuable because it is based 

on the fact that what happened in the past might impact or be inherent the information to the future. 

Bidirectional LSTM was used for Pokhara airport hourly temperature modeling with Adam optimizer, 

and the rest of the uses stacked LSTM with Stochastic Gradient Decent (SGD) optimizer. Table 5 

contains all the details of the prepared nine models of precipitation and air temperature at four stations. 

The complete model architecture of all four stations with all layer properties such as the shape of input 

layers for LSTM model, numbers and shape of hidden layers with a number of neuron details, 

activation function used in the model along with the output layer is shown in figure 6. 

Figure 7 shows the performance of hourly air temperature and precipitation models on training and 

testing data. Similarly figure 8, figure 9 and figure 10 indicates the model performance on Lamachaur 

precipitation model, Lumle  and Begnas maximum, minimum air temperature and precipitation model 
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respectively. Overall the prediction value are pretty close to the original one so the performance of the 

model is good. 

 

Figure 7: Air temperature and precipitation model performance of Pokhara domestic airport on 

training and testing data. 

 

Figure 8: Precipitation model performance of Lamachaur on training and testing data. 
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Figure 9: Maximum and minimum air temperature and precipitation model performance of Lumle 

station on training and testing data. 

3.3.1 Evaluation of Model Performance 

The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the R-squared metrics were 

used to evaluate the performance of the model according to the predicted and measured values from 

the LSTM model. The square root of average squared differences between actual and predicted 

observation is RMSE. MAE means average absolute errors between actual and predicted values, 

whereas R squared measures the extent of variance that how the independent variable of the model is 

able to relate to the dependent one. 
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Figure 10: Maximum and minimum air temperature and precipitation model performance of Begnas 

station on training and testing data. 

Adam optimizer was used for the Pokhara airport hourly temperature model and for rest of the model 

Stochastic Gradient Decent (SGD) was used with different momentum value which is mentioned on 

table 5. 

(6)     RMSE = √
1

𝑛
∑ (𝑎𝑗 − 𝑏𝑗)

2𝑛
𝑗=1  

(7)     MAE =
1

𝑛
∑ |𝑎𝑗 − 𝑏𝑗|
𝑛
𝑗=1  

(8)     𝑅2 = 1 −
Sum of Squares of Residuals

Total Sum of Squares
 

3.4 Deploying the Model 

A combination of programs and frameworks, including Flask for the backend and React JS for the 

frontend, have been used to develop a weather portal. Users can access the results by using the web 

application. The final model is downloaded in hierarchical data format (h5) and they were then loaded 

into the Flask server along with each station’s observational data in CSV file format. The necessary 
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variables and lags were taken from the observational data and stored in a CSV file to prepare the data 

for prediction. The prediction data was standardized using the respective scaler mentioned in Table. 

After normalizing the input data, it was fed to the model to provide normalized output, which was then 

inversely converted to produce denormalized findings. Users were then able to simply receive 

information about the projected temperature and precipitation for their area of interest. The web 

application is static since the database consisting weather parameters used to predict temperature and 

precipitation is limited for a given timestamp. However, it can be made dynamic by feeding the newly 

observed data from the meteorological stations to the database, which either can be done by manually 

editing to the CSV file or by pegging the database with the official DHM’s data, the latter being more 

systematic. 

4. Findings and Discussion  

The hourly precipitation and air temperature for Pokhara Airport station were modeled, while the daily 

precipitation, minimum and maximum air temperature for Lumle, Begnas station, and daily 

precipitation of Lamachaur station were modeled using LSTM. The prediction performance evaluation 

metrics for the modeled LSTM algorithm, RMSE, and MAE were defined, and the R squared value 

was defined to evaluate the overall fit of the data into the model. Table 6 represents the predictive 

power of different models in terms of RMSE and MAE for both train and test data, along with the R-

squared value for each model’s train and test data. 

 Among the models, precipitation of Lamachaur station had a high value of Root Mean Square Error 

(RMSE) of 4.08 and Mean Absolute Error (MAE) of 2.87 on test data because it was modeled with 

only one parameter, i.e. precipitation, followed by Lumle and Begnas precipitation model due to high 

variation of precipitation patterns. The complex nature of precipitation and its dependencies on a 

variety of factors plays a significant role in weak predictive power, because of which high magnitude 

of differences between actual and predicted values were observed in those models when compared to 

others. In contrast, the hourly precipitation of Pokhara Domestic Airport had a least RMSE and MAE 

value of 0.61 and 0.21, respectively, on test data, which indicates the difference in magnitude of the 

actual and predicted value of that station. The superior model performance was achieved in this case 

because the number of datasets that were used for Pokhara Domestic Airport was larger numbers than 

at other stations, due to which the model learned the underlying precipitation patterns of this station 

more significantly. 

 Similarly, in terms of predicting temperature, the hourly temperature of Pokhara Domestic Airport 

outperformed other models with RMSE and MAE values of 0.16 and 0.12. This is due to the fact that 

temperature, more or less, follows seasonal patterns, making it easier to understand the flow of trends 

for an algorithm along with the provision of a larger number of datasets to detect seasonal change. The 

minimum and maximum surface air temperature of Lumle and Begnas stations were predicted with 

the RMSE scores of 0.58 and 0.82 (Lumle) and 0.58 and 0.66 (Begnas). The MAE scores were 0.46 

and 0.64 for Lumle and 0.36 and 0.47 for Begnas station. 

 The measure of R squared value describes fit rather than forecast accuracy; all the models fit to the 

model very accurately with the actual data. The closer its value to 1 means it’s performing better. The 

values range from 0.89 to 0.99, indicating that the relationships between input and target variables 

were captured accurately, maintaining a good fit into the model. 
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Table 6: Train and Test RMSE and MAE of all models. 

Models RMSE MAE R Squared 

Train  Test Train  Test  Train Test 

Airport Hourly Temperature 0.12 0.16 0.077 0.12 0.98 0.96 

Airport Hourly Precipitation 0.78 0.61 0.27 0.21 0.92 0.89 

Lumle Minimum Temperature 0.62 0.58 0.47 0.46 0.98 0.99 

Lumle Maximum Temperature 0.79 0.82 0.6 0.64 0.96 0.96 

Lumle Precipitation 2.16 2.34 1.36 1.52 0.99 0.98 

Begnas Minimum Temperature 0.57 0.58 0.42 0.36 0.98 0.99 

Begnas Maximum Temperature 0.69 0.66 0.51 0.47 0.98 0.98 

Begnas Daily Precipitation 1.55 1.81 0.99 1.15 0.99 0.99 

Lamachaur Precipitation 3.78 4.08 2.73 2.87 0.97 0.97 

 
Analyzing the results from Table 6, it is seen that errors in predictions of temperature are relatively 

lower than in predictions of precipitation of the same meteorological station. This is due to the fact 

that temperature follows seasonal patterns that can be easily understood by deep learning algorithms, 

while precipitation comprises a complex nature with more interdependencies parameters such as wind 

speed, wind direction, atmospheric pressure, etc. This makes the accurate prediction of precipitation 

more challenging. However, the accuracy can be increased provided that most of the influencing 

factors for precipitation are taken into account during the data collection process. Unfortunately, the 

variables recorded in the stations of interest by the DHM did not include a variety of factors responsible 

for rainfall, which eventually became the shortcoming of the project. 

Table 7: Actual VS Predicted values of Pokhara Domestic Airport Station 

Model Actual Predicted Timestamp 

Pokhara Airport Hourly Precipitation 0 0.031 2023-04-16 7:00 

Pokhara Airport Hourly Precipitation 0 0.01 2023-04-16 8:00 

Pokhara Airport Hourly Temperature 30 29.5 2023-04-16 7:00 

Pokhara Airport Hourly Temperature 30.2 29.8 2023-04-16 8:00 

Table 8: Actual VS Predicted Values of Daily Station Models 

Model Actual Predicted Date 

Begnas Daily Precipitation 0 0.078 2022-12-31 

Begnas Daily Maximum Temperature 19 18.65 2022-12-31 

Begnas Daily Minimum Temperature 8.5 7.9 2022-12-31 

Lumle Daily precipitation 0 0.043 2023-04-14 

Lumle Daily Maximum Temperature 26 25.4 2023-04-14 

Lumle Daily Minimum Temperature 14.2 13.4 2023-04-14 

Lamachaur Daily Precipitation 0 1.46 2023-04-16 

 
We have predicted the air temperature and precipitation of the stations using the final model and 

compared them with the actual observed data of that predicted date as shown in Table 7 (multi-step 

forecasting of the next 2 hours) and Table 8 (single-step forecasting). It provides specific knowledge 

about the accuracy of the proposed models as the numeric values of predicted output can be compared 

with the actual observed value at the station. As our objective is to predict the next 2-hour forecast of 
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air temperature and precipitation for Pokhara domestic airport meteorological station and the next one-

day forecast for Lumle, Begnas, and Lamachaur meteorological stations, it was thus achieved an 

acceptable result. 

5. Conclusion 

The precipitation and temperature of all four stations have been modeled using LSTM with different 

numbers of hidden layers, neurons, and optimizers, as well as the best-suited activation function. The 

results of the project indicate 10 that the accuracy of the machine learning models can vary 

significantly depending on the quality and quantity of the datasets and the parameters or variables used 

in the model. Among the stations, Lamachaur station only contains precipitation parameters; on the 

basis of this single parameter, the model of predicting next-day precipitation data using univariate 

LSTM has more error, followed by Lumle, Begnas, and Pokhara Domestic Airport. Although all 

models fit well for training and testing data based on R2 value, Pokhara Airport has a short temporal 

resolution of the hourly dataset and a high number of datasets, so compared to other station models, 

particularly Pokhara Airport’s precipitation and air temperature model performs very well in terms of 

error analysis and all the outputs are deployed through the weather portal. Rather than using complex 

and tedious Numerical Weather Prediction (NWP), the Machine Learning approach will be the best 

alternative for the short computational time with efficient results. Based on the findings and complete 

deployment of the project following are the recommendations for increasing the accuracy of the overall 

project. 

1. Integration of additional weather parameters like due points, cloud state, wind direction, 

atmospheric pressure, and so on makes the prediction more precise.  

2. The use of more dataset will capture the long-term dependencies of weather patterns which helps 

to give better results.  

3. Before using all the historical dataset, calibration of raw data will be highly recommended to 

know about the biases and errors on the original dataset itself after which it will perform well on 

the model. 

4. Incorporating ensemble forecasting will give more precise results.  

5. Further research and studies can explore other machine learning algorithms to improve the 

model accuracy. 
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