1. Home
  2. 2024-V10-I1 Special Issue
  3. STATICAL NONLINEAR ANALYSIS OF SPHERICAL ASSEMBLIES UTILIZING PADE APPROXIMATION
Statistics

Article Views: 59

PDF Downloads: 19

  • Date of Publication : 2024-04-03 Article Type : Research Article
  • STATICAL NONLINEAR ANALYSIS OF SPHERICAL ASSEMBLIES UTILIZING PADE APPROXIMATION

    Shna Jabar Abdulkarim*¹’ ² and  Najmadeen Mohammed Saeed ²’ ³

    Affiliation

    ¹ Civil Engineering Department, Erbil Technical Engineering College, Erbil Polytechnic University, Erbil, Iraq.
    ² Civil Engineering Department, University of Raparin, Rania, Iraq.
    ³ Civil Engineering Department, Faculty of Engineering, Tishk International University, Erbil, Iraq.
    *Corresponding Author


    ORCID :

    Shna Abdulkarim: https://orcid.org/0000-0001-6969-4889Najmadeen Mohammed Saeed: https://orcid.org/0000-0001-7074-0256


    DOI :

    https://doi.org/10.23918/eajse.v10i1p9


    Article History

    Received: 2022-12-04

    Revised: 2023-01-12

    Accepted: 2024-02-18

    Abstract

    A new numerical technique for computing the displacement and internal force is presented and applied to the double-layer spherical model. This numerical approach takes into consideration the geometrical nonlinear response of the pin-jointed rigid systems. The presented method performs a practical way of employing the large deformation within the elastic limit for analyzing space structures. In the proposed technique the nonlinear geometrical response of the assembly is modeled and analyzed as a system of algebraic nonlinear equations. The Pade approximation method is conducted in the derivation to give a high rate of convergent ratio in solving the nonlinear equations. The result is validated using the nonlinear finite element software SAP2000 and the linear force method. The discrepancies between the proposed technique and SAP2000 analysis results for external nodal displacement difference and internal element force difference are computed and compared with the linear technique outcomes. The Euclidean norm index is also used to test the precision of calculated nonlinear nodal displacements. The findings showed more closeness to nonlinear SAP2000 results than the linear method.

    Keywords :

    Geometric Nonlinearity; Nonlinear Analysis; Statical Analysis; Spherical; Force Method.


    [1]    Mahmood A, Katebi J, Saeed N, Manguri A. Optimized Stress and Geometry Control of Spherical structures under Lateral Loadings.  2022 8th International Engineering Conference on Sustainable Technology and Development (IEC)2022. p. 142-8.

    Google Scholar 
    [2]    Manguri A, Saeed N, Mahmood A, Katebi J, Jankowski R. Optimal reshaping and stress controlling of double-layer spherical structures under vertical loadings. Archives of Civil Engineering 2022;vol. 68:591-606. https://doi.org/10.24425/ace.2022.143056.

    Google Scholar 
    [3]    Ravenscroft T. Nine examples of spherical architecture from around the globe. 2020.


    [4]    Saeed NM, Kwan ASK. Simultaneous displacement and internal force prescription in shape control of pin-jointed assemblies. AIAA journal 2016;54:2499-506. https://doi.org/10.2514/1.J054811.

    Google Scholar 
    [5]    Saeed N, Manguri A, Abdulkarim S, Shekha A. Shape Restoration of Deformed Egg-Shaped Single Layer Space Frames.  2019 International Conference on Advanced Science and Engineering (ICOASE)2019. p. 220-5.

    Google Scholar 
    [6]    Kwan ASK. A new approach to geometric nonlinearity of cable structures. Computers & Structures 1998;67:243-52. https://doi.org/10.1016/S0045-7949(98)00052-2.

    Google Scholar 
    [7]    Haisler WE, Stricklin JA, Stebbins FJ. Development and Evaluation of Solution Procedures for Geometrically Nonlinear Structural Analysis. AIAA Journal 1972;10:264-72. https://doi.org/10.2514/3.50089.

    Google Scholar 
    [8]    Lewis WJ, Jones MS, Rushton KR. Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs. Computers & Structures 1984;18:989-97. https://doi.org/10.1016/0045-7949(84)90142-1.

    Google Scholar 
    [9]    Kwan A. A new approach to geometric nonlinearity of cable structures. Computers & Structures 1998;67:243-52. https://doi.org/10.1016/S0045-7949(98)00052-2.

    Google Scholar 
    [10]    Rezaiee-Pajand M, Alamatian J. The dynamic relaxation method using new formulation for fictitious mass and damping. Structural engineering mechanics 2010;34:109. https://doi.org/10.12989/sem.2010.34.1.109.

    Google Scholar 
    [11]    Hüttner M, Máca J, Fajman P. The efficiency of dynamic relaxation methods in static analysis of cable structures. Advances in Engineering Software 2015;89:28-35. https://doi.org/10.1016/j.advengsoft.2015.06.009.

    Google Scholar 
    [12]    Elmardi OM. Dynamic Relaxation Method. Theoretical Analysis, Solved Examples and Computer Programming: Anchor Academic Publishing; 2016. 

    Google Scholar 
    [13]    Rezaiee-Pajand M, Mohammadi-Khatami M. Nonlinear analysis of cable structures using the dynamic relaxation method. rontiers of Structural Civil Engineering 2021:0. https://doi.org/10.1007/s11709-020-0639-y.

    Google Scholar 
    [14]    Thai H-T, Kim S-E. Nonlinear static and dynamic analysis of cable structures. Finite Elements in Analysis and Design 2011;47:237-46. https://doi.org/10.1016/j.finel.2010.10.005.

    Google Scholar 
    [15]    Abad MSA, Shooshtari A, Esmaeili V, Riabi AN. Nonlinear analysis of cable structures under general loadings. Finite elements in analysis and design 2013;73:11-9. https://doi.org/10.1016/j.finel.2013.05.002.

    Google Scholar 
    [16]    Naghavi Riabi AR, Shooshtari A. A numerical method to material and geometric nonlinear analysis of cable structures. Mechanics Based Design of Structures Machines 2015;43:407-23. https://doi.org/10.1080/15397734.2015.1012295.

    Google Scholar 
    [17]    Coda HB, Silva APdO, Paccola RR. Alternative active nonlinear total Lagrangian truss finite element applied to the analysis of cable nets and long span suspension bridges. Latin American Journal of Solids Structures 2020;17. https://doi.org/10.1590/1679-78255818.

    Google Scholar 
    [18]    Kanno Y, Ohsaki M. Minimum Principle of Complementary Energy for Nonlinear Elastic Cable Networks with Geometrical Nonlinearities. Journal of Optimization Theory and Applications 2005;126:617-41. https://doi.org/10.1007/s10957-005-5500-x.

    Google Scholar 
    [19]    Temür R, Türkan YS, Toklu YC. Geometrically nonlinear analysis of trusses using particle swarm optimization.  Recent advances in swarm intelligence and evolutionary computation: Cham, Switzerland: Springer; 2015. p. 283-300.

    Google Scholar 
    [20]    Toklu YC, Bekdaş G, Temür R. Analysis of cable structures through energy minimization. Structural Engineering and Mechanics 2017;62:749-58. https://doi.org/10.12989/sem.2017.62.6.749.

    Google Scholar 
    [21]    Branam NJ, Arcaro V, Adeli H. A unified approach for analysis of cable and tensegrity structures using memoryless quasi-newton minimization of total strain energy. Engineering Structures 2019;179:332-40. https://doi.org/10.1016/j.engstruct.2018.11.004.

    Google Scholar 
    [22]    Abdulkarim SJ, Saeed NM, Haji HA. Direct Displacement Control of Deformed Double Layer Dome. UKH Journal of Science and Engineering 2020;4:1-14. https://doi.org/10.25079/ukhjse.v4n1y2020.pp1-14.

    Google Scholar 
    [23]    Luo Y, Lu J. Geometrically non-linear force method for assemblies with infinitesimal mechanisms. Computers & Structures 2006;84:2194-9. https://doi.org/10.1016/j.compstruc.2006.08.063.

    Google Scholar 
    [24]    Xu X, Luo Y. Non-linear displacement control of prestressed cable structures. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2009;223:1001-7. https://doi.org/10.1243/09544100JAERO455.

    Google Scholar 
    [25]    Yuan X, Liang X, Li A. Shape and force control of prestressed cable-strut structures based on nonlinear force method. Advances in Structural Engineering 2016;19:1917-26. https://doi.org/10.1177/1369433216652411.

    Google Scholar 
    [26]    Manguri AA, Saeed NM. An Approximate Linear Analysis of Structures Using Incremental Loading of Force Method. UKH Journal of Science Engineering Structures 2020;4:37-44. https://doi.org/10.25079/ukhjse.v4n1y2020.pp37-44.

    Google Scholar 
    [27]    Saeed N, Manguri A, Szczepanski M, Jankowski R. Non-Linear Analysis of Structures Utilizing Load-Discretization of Stiffness Matrix Method with Coordinate Update. Applied Sciences 2022;12:2394. https://doi.org/10.3390/app12052394.

    Google Scholar 
    [28]    Lewis JW. A comparative study of numerical methods for the solution of pretensioned cable networks. In: Topping BHV, editor. Proceedings of the International Conference on the Design and Construction of Non-Conventional Structures. Edinburgh, U.K. : Civil-Comp Press; 1987. p. 27-33.

    Google Scholar 
    [29]    Abdulkarim SJ, Saeed NM. Nonlinear technique of prestressing spatial structures. Mechanics Research Communications 2023;127:104040. https://doi.org/10.1016/j.mechrescom.2022.104040.

    Google Scholar 
    [30]    Calladine CR. Buckminster Fuller's “Tensegrity” structures and Clerk Maxwell's rules for the construction of stiff frames. International Journal of Solids and Structures 1978;14:161-72. https://doi.org/10.1016/0020-7683(78)90052-5.

    Google Scholar 
    [31]    Baker GA, Baker Jr GA, Graves-Morris P, Baker G, Baker SS. Pade Approximants: Encyclopedia of Mathematics and It's Applications, Vol. 59 George A. Baker, Jr., Peter Graves-Morris: Cambridge University Press; 1996. 

    Google Scholar 
    [32]    Vazquez-Leal H, Benhammouda B, Filobello-Nino U, Sarmiento-Reyes A, Jimenez-Fernandez VM, Garcia-Gervacio JL, et al. Direct application of Padé approximant for solving nonlinear differential equations. SpringerPlus 2014;3:563. https://doi.org/10.1186/2193-1801-3-563.

    Google Scholar 
    [33]    Nisar KS, Ali J, Mahmood MK, Ahmed D, Ali S. Hybrid evolutionary padé approximation approach for numerical treatment of nonlinear partial differential equations. Alexandria Engineering Journal 2021;60:4411-21. https://doi.org/10.1016/j.aej.2021.03.030.

    Google Scholar 



    @article{abdulkarim,shnajabarandsaeed,najmadeenmohammed2024,
     author = {Abdulkarim, Shna Jabar and Saeed, Najmadeen Mohammed},
     title = {STATICAL NONLINEAR ANALYSIS OF SPHERICAL ASSEMBLIES UTILIZING PADE APPROXIMATION},
     journal = {Eurasian J. Sci. Eng},
     volume = {10},
     number = {1},
     pages = {103-112},
     year = {2024}
    }
    Copy

    Abdulkarim, S. J., & Saeed, N. M. (2024). STATICAL NONLINEAR ANALYSIS OF SPHERICAL ASSEMBLIES UTILIZING PADE APPROXIMATION. Eurasian J. Sci. Eng, 10(1),103-112.

    Copy

    Abdulkarim, SJ, and Saeed NM. "STATICAL NONLINEAR ANALYSIS OF SPHERICAL ASSEMBLIES UTILIZING PADE APPROXIMATION." Eurasian J. Sci. Eng, 10.1, (2024), pp.103-112.

    Copy

    Abdulkarim, S. J., & Saeed, N. M. (2024) "STATICAL NONLINEAR ANALYSIS OF SPHERICAL ASSEMBLIES UTILIZING PADE APPROXIMATION", Eurasian J. Sci. Eng, 10(1), pp.103-112.

    Copy

    Abdulkarim SJ, Saeed NM. STATICAL NONLINEAR ANALYSIS OF SPHERICAL ASSEMBLIES UTILIZING PADE APPROXIMATION. Eurasian J. Sci. Eng. 2024; 10(1):103-112.

    Copy

    Under Development

    Under Development

    Under Development

  • STATICAL NONLINEAR ANALYSIS OF SPHERICAL ASSEMBLIES UTILIZING PADE APPROXIMATION