Optimization and Modeling the Processes of Green Magnetite Nanoparticle: Synthesis, Photo Catalysis Tendency and Kinetics of Removing Organic Dye from Aqueous Solutions

Authors: Avan Kareem1 & Ibtisam Kamal2
1Chemical Engineering Department, Faculty of Engineering, Soran University, Kurdistan Region, Iraq
2Chemical Engineering Department, Faculty of Engineering, Soran University, Kurdistan Region, Iraq

Abstract: Green magnetite nanoparticles (NPs) are synthesized, characterized and employed for degradation Methylene Blue (MB) from aqueous solutions. The effect of the concentrations of the NPs and MB on NPs yield and removal efficiency is optimized and modeled using two factorial central composite experimental design. The analysis of variance confirmed that the concentration of iron metal salts seemed more significant than plant extract. The developed mathematical model is estimated with high R2 reflecting its accuracy. The results proved that the removal efficiency of MB increases up to an optimum of 82.07 % when using 0.17 g of the nano photo catalyst versus 10.8 ppm of MB with sunlight irradiation time of 200 min. The dye degradation kinetic results revealed that photo catalytic degradation follow pseudo-first-order model. Response Surface Methodology proved as an efficient tool for optimization and modeling the processes of NPs production and removing of organic pollutants from aqueous solutions.

Keywords: Green Magnetite Nanoparticles, Methylene Blue, Removal Efficiency, Optimization, Modeling, Metheylen Blue Degradation Rate, Removal Efficiency

Download the PDF Document

Doi: 10.23918/eajse.v9i1p71

Published: January 12, 2023


Abdallah, R. M., & Al-Haddad, R. M. S. (2021). Optical and Morphology Properties of the Magnetite (Fe3O4) Nanoparticles Prepared by Green Method. Journal of Physics: Conference Series, 1829(1). https://doi.org/10.1088/1742-6596/1829/1/012022

Alanazi, F. K., Radwan, A. A., & Alsarra, I. A. (2010). Biopharmaceutical applications of nanogold. Saudi Pharmaceutical Journal, 18(4), 179–193. https://doi.org/10.1016/j.jsps.2010.07.002

Amir, W. M., Shafiq, M., Mokhtar, K., Aleng, N. A., Rahim, H. A., & Ali, Z. (2016). JMASM algorithms and code simple response surface methodology using RSREG (SAS). Journal of Modern Applied Statistical Methods, 15(1), 855–867. https://doi.org/10.22237/jmasm/1462077780

Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2019). Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 12(8), 4897–4919. https://doi.org/10.1016/j.arabjc.2016.10.004

Asanithi, P., Chaiyakun, S., & Limsuwan, P. (2012). Growth of silver nanoparticles by DC magnetron sputtering. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/963609

Assa, F., Jafarizadeh-Malmiri, H., Ajamein, H., Anarjan, N., Vaghari, H., Sayyar, Z., & Berenjian, A. (2016). A biotechnological perspective on the application of iron oxide nanoparticles. Nano Research, 9(8), 2203–2225. https://doi.org/10.1007/s12274-016-1131-9

Ba, D., & Boyaci, I. H. (2007). Modeling and optimization i: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024

Beg, Q. K., Saxena, R. K., & Gupta, R. (2002). Kinetic constants determination for an alkaline protease from Bacillus mojavensis using response surface methodology. Biotechnology and Bioengineering, 78(3), 289–295. https://doi.org/10.1002/bit.10203

Chen, L., Yokel, R. A., Hennig, B., & Toborek, M. (2008). Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. Journal of Neuroimmune Pharmacology, 3(4), 286–295. https://doi.org/10.1007/s11481-008-9131-5

Chowdhury, S., Yusof, F., Faruck, M. O., & Sulaiman, N. (2016). Process Optimization of Silver Nanoparticle Synthesis Using Response Surface Methodology. Procedia Engineering, 148, 992–999. https://doi.org/10.1016/j.proeng.2016.06.552

Cui, J., Zhang, F., Li, H., Cui, J., Ren, Y., & Yu, X. (2020). Recent progress in biochar-based photocatalysts for wastewater treatment: Synthesis, mechanisms, and applications. Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10031019

de Oliveira Guidolin, T., Possolli, N. M., Polla, M. B., Wermuth, T. B., Franco de Oliveira, T., Eller, S., Klegues Montedo, O. R., Arcaro, S., & Cechinel, M. A. P. (2021). Photocatalytic pathway on the degradation of methylene blue from aqueous solutions using magnetite nanoparticles. Journal of Cleaner Production, 318(August). https://doi.org/10.1016/j.jclepro.2021.128556

Elfeky, A. S., Youssef, H. F., & Elzaref, A. S. (2020). Adsorption of Dye from Wastewater onto ZnO Nanoparticles-Loaded Zeolite: Kinetic, Thermodynamic and Isotherm Studies. Zeitschrift Fur Physikalische Chemie, 234(2), 255–278. https://doi.org/10.1515/zpch-2018-1342

Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013

Gadekar, M. R., & Ahammed, M. M. (2019). Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach. Journal of Environmental Management, 231(April 2018), 241–248. https://doi.org/10.1016/j.jenvman.2018.10.017

Gericke, M., & Pinches, A. (2006). Microbial production of gold nanoparticles. Gold Bulletin, 39(1), 22–28. https://doi.org/10.1007/BF03215529

Gilroy, K. D., Ruditskiy, A., Peng, H. C., Qin, D., & Xia, Y. (2016). Bimetallic nanocrystals: Syntheses, properties, and applications. Chemical Reviews, 116(18), 10414–10472. https://doi.org/10.1021/acs.chemrev.6b00211

Giovannetti, R., Rommozzi, E., D’Amato, C. A., & Zannotti, M. (2016). Kinetic model for simultaneous adsorption/photodegradation process of alizarin red S in water solution by nano-TiO2 under visible light. Catalysts, 6(6). https://doi.org/10.3390/catal6060084

Gros, G., Moll, W., Hoppe, H., & Gros, H. (1976). Proton transport by phosphate diffusion – a mechanism of facilitated CO2 transfer. Journal of General Physiology, 67(6), 773–790. https://doi.org/10.1085/jgp.67.6.773

Gutiérrez, M. C., Pepió, M., Crespi, M., & Mayor, N. (2001). Control factors in the electrochemical oxidation of reactive dyes. Coloration Technology, 117(6), 356–361. https://doi.org/10.1111/j.1478-4408.2001.tb00090.x

Hashim, K. S., Hussein, A. H., Zubaidi, S. L., Kot, P., Kraidi, L., Alkhaddar, R., Shaw, A., & Alwash, R. (2019). Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. Journal of Physics: Conference Series, 1294(7). https://doi.org/10.1088/1742-6596/1294/7/072017

He, X., Male, K. B., Nesterenko, P. N., Brabazon, D., Paull, B., & Luong, J. H. T. (2013). Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Applied Materials and Interfaces, 5(17), 8796–8804. https://doi.org/10.1021/am403222u

Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016). Green synthesis of nanoparticles and its potential application. Biotechnology Letters, 38(4), 545–560. https://doi.org/10.1007/s10529-015-2026-7

Huynh, K. H., Pham, X. H., Kim, J., Lee, S. H., Chang, H., Rho, W. Y., & Jun, B. H. (2020). Synthesis, properties, and biological applications of metallic alloy nanoparticles. International Journal of Molecular Sciences, 21(14), 1–29. https://doi.org/10.3390/ijms21145174

Ibañez, F. J., & Zamborini, F. P. (2012). Chemiresistive sensing with chemically modified metal and alloy nanoparticles. Small, 8(2), 174–202. https://doi.org/10.1002/smll.201002232

Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650. https://doi.org/10.1039/c1gc15386b

Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. (2021). Green synthesis of nanoparticles using plant extracts: a review. Environmental Chemistry Letters, 19(1), 355–374. https://doi.org/10.1007/s10311-020-01074-x

Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., & Rao, K. V. B. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 90, 78–84. https://doi.org/10.1016/j.saa.2012.01.006

Jiang, X. H., Wang, L. C., Yu, F., Nie, Y. C., Xing, Q. J., Liu, X., Pei, Y., Zou, J. P., & Dai, W. L. (2018). Photodegradation of Organic Pollutants Coupled with Simultaneous Photocatalytic Evolution of Hydrogen Using Quantum-Dot-Modified g-C3N4 Catalysts under Visible-Light Irradiation. ACS Sustainable Chemistry and Engineering, 6(10), 12695–12705. https://doi.org/10.1021/acssuschemeng.8b01695

Keat, C. L., Aziz, A., Eid, A. M., & Elmarzugi, N. A. (2015). Biosynthesis of nanoparticles and silver nanoparticles. Bioresources and Bioprocessing, 2(1). https://doi.org/10.1186/s40643-015-0076-2

Khanna, P. K., Gaikwad, S., Adhyapak, P. V., Singh, N., & Marimuthu, R. (2007). Synthesis and characterization of copper nanoparticles. Materials Letters, 61(25), 4711–4714. https://doi.org/10.1016/j.matlet.2007.03.014

Khoshnamvand, N., Kord Mostafapour, F., Mohammadi, A., & Faraji, M. (2018). Response surface methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV). AMB Express, 8(1), 0–8. https://doi.org/10.1186/s13568-018-0579-2

Kim, S. W., Park, J., Jang, Y., Chung, Y., Hwang, S., Hyeon, T., & Kim, Y. W. (2003). Synthesis of monodisperse palladium nanoparticles. Nano Letters, 3(9), 1289–1291. https://doi.org/10.1021/nl0343405

Klębowski, B., Depciuch, J., Parlińska-Wojtan, M., & Baran, J. (2018). Applications of noble metal-based nanoparticles in medicine. International Journal of Molecular Sciences, 19(12). https://doi.org/10.3390/ijms19124031

Krstić, V. (2021). Role of zeolite adsorbent in water treatment. In Handbook of Nanomaterials for Wastewater Treatment. https://doi.org/10.1016/b978-0-12-821496-1.00024-6

Kumari, M., & Gupta, S. K. (2019). Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP) – An endeavor to diminish probable cancer risk. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-54902-8

Kundu, A., & Mondal, A. (2019). Photodegradation of methylene blue under direct sunbeams by synthesized anatase titania nanoparticles. SN Applied Sciences, 1(3). https://doi.org/10.1007/s42452-019-0280-3

Kurajica, S., Minga, I., Blazic, R., Muzina, K., & Tominac, P. (2018). Adsorption and Degradation Kinetics of Methylene Blue on As-prepared and Calcined Titanate Nanotubes. Athens Journal of Sciences, 5(1), 7–22. https://doi.org/10.30958/ajs.5-1-1

Li, N., Zhao, P., & Astruc, D. (2014). Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angewandte Chemie – International Edition, 53(7), 1756–1789. https://doi.org/10.1002/anie.201300441

Liao, S., Donggen, H., Yu, D., Su, Y., & Yuan, G. (2004). Preparation and characterization of ZnO/TiO2, SO42-/ZnO/TiO2 photocatalyst and their photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 168(1–2), 7–13. https://doi.org/10.1016/j.jphotochem.2004.05.010

Madkour, L. H. (2019). Polymer nanoparticle drug-nucleic acid combinations. Nucleic Acids as Gene Anticancer Drug Delivery Therapy, 241–255. https://doi.org/10.1016/b978-0-12-819777-6.00014-7

Maekawa, K., Yamasaki, K., Niizeki, T., Mita, M., Matsuba, Y., Terada, N., & Saito, H. (2012). Drop-on-demand laser sintering with silver nanoparticles for electronics packaging. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(5), 868–877. https://doi.org/10.1109/TCPMT.2011.2178606

Ngo, Hoang, T. (2012). The Steps to Follow in a Multiple Regression Analysis. SAS Global Forum 2012, 1–12.

Nguyen, D. A., & Fogler, H. S. (2005). Facilitated diffusion in the dissolution of carboxylic polymers. AIChE Journal, 51(2), 415–425. https://doi.org/10.1002/aic.10329

Nikaeen, G., Yousefinejad, S., Rahmdel, S., Samari, F., & Mahdavinia, S. (2020). Central Composite Design for Optimizing the Biosynthesis of Silver Nanoparticles using Plantago major Extract and Investigating Antibacterial, Antifungal and Antioxidant Activity. Scientific Reports, 10(1), 1–16. https://doi.org/10.1038/s41598-020-66357-3

Nurbas, M., Ghorbanpoor, H., & Avci, H. (2017). An eco-friendly approach to synthesis and characterization of magnetite (Fe3O4) nanoparticles using Platanus Orientalis L. leaf extract. Digest Journal of Nanomaterials and Biostructures, 12(4), 993–1000.

Oehlert, G. W. (2000). A First Course in Design and Analysis of Experiments. In The American Statistician (Vol. 1, Issue 1). https://users.stat.umn.edu/~gary/book/fcdae.pdf

Pantidos, N. (2014). Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. Journal of Nanomedicine & Nanotechnology, 05(05). https://doi.org/10.4172/2157-7439.1000233

Patiño-Ruiz, D. A., Meramo-Hurtado, S. I., González-Delgado, Á. D., & Herrera, A. (2021). Environmental Sustainability Evaluation of Iron Oxide Nanoparticles Synthesized via Green Synthesis and the Coprecipitation Method: A Comparative Life Cycle Assessment Study. ACS Omega, 6(19), 12410–12423. https://doi.org/10.1021/acsomega.0c05246

Rajamanickam, D., & Shanthi, M. (2016). Photocatalytic degradation of an organic pollutant by zinc oxide – solar process. Arabian Journal of Chemistry, 9, S1858–S1868. https://doi.org/10.1016/j.arabjc.2012.05.006

Reverberi, A. P., Vocciante, M., Lunghi, E., Pietrelli, L., & Fabiano, B. (2017). New trends in the synthesis of nanoparticles by green methods. Chemical Engineering Transactions, 61, 667–672. https://doi.org/10.3303/CET1761109

Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9(5), 2673–2702. https://doi.org/10.1039/c8ra08982e

Sagadevan, S., Imteyaz, S., Murugan, B., Anita Lett, J., Sridewi, N., Weldegebrieal, G. K., Fatimah, I., & Oh, W. C. (2022). A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Processing and Synthesis, 11(1), 44–63. https://doi.org/10.1515/gps-2022-0005

Saif, S., Tahir, A., & Chen, Y. (2016). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6(11), 1–26. https://doi.org/10.3390/nano6110209

Salman Ali, A. (2020). Application of Nanomaterials in Environmental Improvement. Nanotechnology and the Environment, 1–20. https://doi.org/10.5772/intechopen.91438

Sanguansri, P., & Augustin, M. A. (2006). Nanoscale materials development – a food industry perspective. Trends in Food Science and Technology, 17(10), 547–556. https://doi.org/10.1016/j.tifs.2006.04.010

Sathishkumar, G., Logeshwaran, V., Sarathbabu, S., Jha, P. K., Jeyaraj, M., Rajkuberan, C., Senthilkumar, N., & Sivaramakrishnan, S. (2018). Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities. Artificial Cells, Nanomedicine and Biotechnology, 46(3), 589–598. https://doi.org/10.1080/21691401.2017.1332635

Schröfel, A., Kratošová, G., Šafařík, I., Šafaříková, M., Raška, I., & Shor, L. M. (2014). Applications of biosynthesized metallic nanoparticles – A review. Acta Biomaterialia, 10(10), 4023–4042. https://doi.org/10.1016/j.actbio.2014.05.022

Sharma, D., Kanchi, S., & Bisetty, K. (2019). Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry, 12(8), 3576–3600. https://doi.org/10.1016/j.arabjc.2015.11.002

Silva, M. J., Gomes, J., Ferreira, P., & Martins, R. C. (2022). An Overview of Polymer-Supported Catalysts for Wastewater Treatment through Light-Driven Processes. Water (Switzerland), 14(5), 1–34. https://doi.org/10.3390/w14050825

Tripathi, S., Singh, V. K., Srivastava, P., Singh, R., Devi, R. S., Kumar, A., & Bhadouria, R. (2019). Phytoremediation of organic pollutants: Current status and future directions. In Abatement of Environmental Pollutants: Trends and Strategies. Elsevier Inc. https://doi.org/10.1016/B978-0-12-818095-2.00004-7

Vasiljevic, Z. Z., Dojcinovic, M. P., Vujancevic, J. D., Jankovic-Castvan, I., Ognjanovic, M., Tadic, N. B., Stojadinovic, S., Brankovic, G. O., & Nikolic, M. V. (2020). Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol-gel method: Methylene blue degradation with Fe2TiO5. Royal Society Open Science, 7(9). https://doi.org/10.1098/rsos.200708

Venkatesh, N. (2018). Metallic Nanoparticle: A Review. Biomedical Journal of Scientific & Technical Research, 4(2), 3765–3775. https://doi.org/10.26717/bjstr.2018.04.0001011

Wang, J., Xu, J., & Wu, N. (2017). Kinetics and equilibrium studies of methylene blue adsorption on 2D nanolamellar Fe3O4. Journal of Experimental Nanoscience, 12(1), 297–307. https://doi.org/10.1080/17458080.2017.1325016

Wang, S., & Gao, L. (2019). Laser-driven nanomaterials and laser-enabled nanofabrication for industrial applications. In Industrial Applications of Nanomaterials. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815749-7.00007-4

Wu, W., He, Q., & Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Research Letters, 3(11), 397–415. https://doi.org/10.1007/s11671-008-9174-9

Xu, C., Rangaiah, G. P., & Zhao, X. S. (2014). Photocatalytic degradation of methylene blue by titanium dioxide: Experimental and modeling study. Industrial and Engineering Chemistry Research, 53(38), 14641–14649. https://doi.org/10.1021/ie502367x

Yaseen, D. A., & Scholz, M. (2019). Impact of pH on the Treatment of Artificial Textile Wastewater Containing Azo Dyes Using Pond Systems. International Journal of Environmental Research, 13(2), 367–385. https://doi.org/10.1007/s41742-019-00180-1

Yew, Y. P., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N. B., Bt Mohamad, S. E., & Lee, K. X. (2016). Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract. Nanoscale Research Letters, 11(1). https://doi.org/10.1186/s11671-016-1498-2

Zhang, J., Yu, Y., & Zhang, B. (2020). Synthesis and characterization of size controlled alloy nanoparticles. Physical Sciences Reviews, 5(3), 1–19. https://doi.org/10.1515/psr-2018-0046

Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9). https://doi.org/10.3390/ijms17091534