Synergetic Interactions of Nanoscale Zero-Valent Iron (nZVI) and Anaerobic Bacteria in Groundwater Remediation: A Review

Authors: Muayad Shawkat Sheikh1 & Kamal Kolo2 & Samir Mustafa Hamad3
1Department of Biogeosciences, Scientific Research Center (SRC), Soran University, Soran Erbil, Iraq
1Directorate of Water, Soran, Erbil, Iraq
2Soran Scientific Research Center (SRC), Soran University, Soran, Erbil, Iraq
3Nanotechnology Department, Scientific Research Centre, Soran University, Erbil, Iraq
3Computer Department, Cihan University-Erbil, Erbil, Iraq

Abstract: During the last century, large scale production of halogenated organic compounds and heavy metals, specifically by industrial processes, and the inappropriate management of those products caused a wide spreading of a variety of hazardous contaminants into the environment including a massive contamination of the groundwater. Their presence and persistence have significantly influenced human health and the environment. Recently, many technologies have been employed in order to reduce their impacts. However, the majority of those technologies did not achieve the target, because of their high cost and low efficacy in the reduction of contaminants. Nevertheless, a new technology of synergetic interactions of (nZVI) zero-valent iron nanoparticles with two types of anaerobic bacteria; the organohalide respiring bacteria (OHRB) and sulfate-reducing bacteria (SRB), have been investigated as a promising technology for in-situ groundwater remediation. This powerful technique was successfully utilized for the reduction of pollutants and converted to environmentally benign forms. This article reviews and emphasizes the coupling effect of (nZVI-OHRB) and (nZVI-SRB) on the remediation process of contaminated sites, in addition to a detailed illustration of the mechanism of the integration of (nZVI-OHRB) and (nZVI-SRBs), and discussion of the influencing factors on the integrated system. Actually, the technology presented here, though proven successfully, needs more case studies to better understanding of the interactions between microorganisms and nZVI, as well as with the surrounding environment for a better efficacy and finding the best solutions.

Keywords: Chlorinated (Halogenated) Solvents, Groundwater Remediation, Heavy Metals, Microbial Reductive Dehalogenation, Nanoscale Zero Valent Iron (nZVI), Organohalide Respiring Bacteria (OHRB), Sulfate-Reducing Bacteria (SRB)

Download the PDF Document

Doi: 10.23918/easje.v8i2p35

Published: September 6, 2022


Arnold, W. A., & Roberts, A. L. (2000). Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe (0) particles. Environmental Science & Technology, 34(9), 1794-1805.

Auffan, M., Achouak, W., Rose, J., Roncato, M. A., Chaneac, C., Waite, D. T., . . . Bottero, J. Y. (2008). Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol, 42(17), 6730-6735. doi:10.1021/es800086f

Avio, C. G., Gorbi, S., & Regoli, F. (2017). Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar Environ Res, 128, 2-11. doi:10.1016/j.marenvres.2016.05.012

Bommer, M., Kunze, C., Fesseler, J., Schubert, T., Diekert, G., & Dobbek, H. (2014). Structural basis for organohalide respiration. Science, 346(6208), 455-458. doi:10.1126/science.1258118

Cao, J., Xu, R., Tang, H., Tang, S., & Cao, M. (2011). Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1,2,4-trichlorobenzene. Sci Total Environ, 409(11), 2336-2341. doi:10.1016/j.scitotenv.2011.02.045

Carr, C. S., & Hughes, J. B. (1998). Enrichment of high-rate PCE dechlorination and comparative study of lactate, methanol, and hydrogen as electron donors to sustain activity. Environmental Science & Technology, 32(12), 1817-1824.

Chaithawiwat, K., Vangnai, A., McEvoy, J. M., Pruess, B., Krajangpan, S., & Khan, E. (2016). Impact of nanoscale zero valent iron on bacteria is growth phase dependent. Chemosphere, 144, 352-359. doi:10.1016/j.chemosphere.2015.09.025

Chen, F., Meng, F., Pan, L., Xu, F., Liu, X., & Yu, W. (2012). Boosting immune response with the invariant chain segments via association with non-peptide binding region of major histocompatibility complex class II molecules. BMC Immunol, 13(1), 55. doi:10.1186/1471-2172-13-55

Chen, J. L., Al-Abed, S. R., Ryan, J. A., & Li, Z. (2001). Effects of pH on dechlorination of trichloroethylene by zero-valent iron. J Hazard Mater, 83(3), 243-254. doi:10.1016/s0304-3894(01)00193-5

Diao, Z. H., Du, J. J., Jiang, D., Kong, L. J., Huo, W. Y., Liu, C. M., . . . Xu, X. R. (2018). Insights into the simultaneous removal of Cr(6+) and Pb(2+) by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: Coexistence effect and mechanism. Sci Total Environ, 642, 505-515. doi:10.1016/j.scitotenv.2018.06.093

Dong, H., Jiang, Z., Deng, J., Zhang, C., Cheng, Y., Hou, K., . . . Zeng, G. (2018). Physicochemical transformation of Fe/Ni bimetallic nanoparticles during aging in simulated groundwater and the consequent effect on contaminant removal. Water Res, 129, 51-57. doi:10.1016/j.watres.2017.11.002

Dong, H., Li, L., Lu, Y., Cheng, Y., Wang, Y., Ning, Q., . . . Zeng, G. (2019). Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review. Environ Int, 124, 265-277. doi:10.1016/j.envint.2019.01.030

Dong, H., Zhao, F., He, Q., Xie, Y., Zeng, Y., Zhang, L., . . . Zeng, G. (2017). Physicochemical transformation of carboxymethyl cellulose-coated zero-valent iron nanoparticles (nZVI) in simulated groundwater under anaerobic conditions. Separation and Purification Technology, 175, 376-383. doi:10.1016/j.seppur.2016.11.053

Doong, R. A., & Lai, Y. J. (2005). Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid. Water Res, 39(11), 2309-2318. doi:10.1016/j.watres.2005.04.036

Elliott, D. W., & Zhang, W. X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol, 35(24), 4922-4926. doi:10.1021/es0108584

Fang, Z., Qiu, X., Chen, J., & Qiu, X. (2011). Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism. J Hazard Mater, 185(2-3), 958-969. doi:10.1016/j.jhazmat.2010.09.113

Farrell, J., Melitas, N., Kason, M., & Li, T. (2000). Electrochemical and column investigation of iron-mediated reductive dechlorination of trichloroethylene and perchloroethylene. Environmental Science & Technology, 34(12), 2549-2556.

Fulekar, M., & Pathak, B. (2017). Environmental nanotechnology: CRC Press.

Galus, Z., Bard, A., Parsons, R., & Jordan, J. (1985). Standard potentials in aqueous solution. by AJ Bard, R. Parsons, and J. Jordan, IUPAC, Marcel Dekker, Inc., New York, 200-206.

Gerritse, J., Drzyzga, O., Kloetstra, G., Keijmel, M., Wiersum, L. P., Hutson, R., . . . Gottschal, J. C. (1999). Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol, 65(12), 5212-5221. doi:10.1128/AEM.65.12.5212-5221.1999

Goris, T., Schiffmann, C. L., Gadkari, J., Schubert, T., Seifert, J., Jehmlich, N., . . . Diekert, G. (2015). Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates. Sci Rep, 5, 13794. doi:10.1038/srep13794

Gu, B., Phelps, T., Liang, L., Dickey, M., Roh, Y., Kinsall, B., . . . Jacobs, G. (1999). Biogeochemical dynamics in zero-valent iron columns: implications for permeable reactive barriers. Environmental Science & Technology, 33(13), 2170-2177.

Guo, J., Kang, Y., & Feng, Y. (2017). Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron. J Environ Manage, 203(Pt 1), 278-285. doi:10.1016/j.jenvman.2017.07.075

He, F., Zhang, M., Qian, T., & Zhao, D. (2009). Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling. J Colloid Interface Sci, 334(1), 96-102. doi:10.1016/j.jcis.2009.02.058

He, F., & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol, 39(9), 3314-3320. doi:10.1021/es048743y

He, F., & Zhao, D. (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol, 41(17), 6216-6221. doi:10.1021/es0705543

He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res, 44(7), 2360-2370. doi:10.1016/j.watres.2009.12.041

Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19(45), 8671-8677. doi:10.1039/b909148c

Hood, E. D., Major, D. W., Quinn, J. W., Yoon, W. S., Gavaskar, A., & Edwards, E. A. (2008). Demonstration of Enhanced Bioremediation in a TCE Source Area at Launch Complex 34, Cape Canaveral Air Force Station. Groundwater Monitoring & Remediation, 28(2), 98-107. doi:10.1111/j.1745-6592.2008.00197.x

Hu, J., Eriksson, L., Bergman, A., Jakobsson, E., Kolehmainen, E., Knuutinen, J., . . . Wei, X. (2005). Molecular orbital studies on brominated diphenyl ethers. Part II–reactivity and quantitative structure-activity (property) relationships. Chemosphere, 59(7), 1043-1057. doi:10.1016/j.chemosphere.2004.11.029

Hu, K., Wang, Q., Tao, G., Wang, A., & Ding, D. (2011). Experimental Study on Restoration of Polluted Groundwater from in Situ Leaching Uranium Mining with Sulfate Reducing Bacteria and ZVI-SRB. Procedia Earth and Planetary Science, 2, 150-155. doi:10.1016/j.proeps.2011.09.025

Hurtado, C., Montano-Chávez, Y. N., Domínguez, C., & Bayona, J. M. (2017). Degradation of Emerging Organic Contaminants in an Agricultural Soil: Decoupling Biotic and Abiotic Processes. Water, Air, & Soil Pollution, 228(7), 243. doi:10.1007/s11270-017-3402-9

Jeon, J. R., Murugesan, K., Baldrian, P., Schmidt, S., & Chang, Y. S. (2016). Aerobic bacterial catabolism of persistent organic pollutants – potential impact of biotic and abiotic interaction. Curr Opin Biotechnol, 38, 71-78. doi:10.1016/j.copbio.2015.12.016

Johnson, R. L., Johnson, G. O., Nurmi, J. T., & Tratnyek, P. G. (2009). Natural organic matter enhanced mobility of nano zerovalent iron. Environ Sci Technol, 43(14), 5455-5460. doi:10.1021/es900474f
Kang, J. W. (2014). Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett, 36(6), 1129-1139. doi:10.1007/s10529-014-1466-9

Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect, 117(12), 1813-1831. doi:10.1289/ehp.0900793

Keum, Y. S., & Li, Q. X. (2005). Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environ Sci Technol, 39(7), 2280-2286. doi:10.1021/es048846g

Kharissova, O. V., Dias, H. V., Kharisov, B. I., Perez, B. O., & Perez, V. M. (2013). The greener synthesis of nanoparticles. Trends Biotechnol, 31(4), 240-248. doi:10.1016/j.tibtech.2013.01.003

Kim, H. J., Phenrat, T., Tilton, R. D., & Lowry, G. V. (2012). Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J Colloid Interface Sci, 370(1), 1-10. doi:10.1016/j.jcis.2011.12.059

Kim, J. H., Tratnyek, P. G., & Chang, Y. S. (2008). Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ Sci Technol, 42(11), 4106-4112. doi:10.1021/es702560k

Kim, Y.-H., & Carraway, E. R. (2000). Dechlorination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons. EnST, 34(10), 2014-2017.

Kim, Y. H., Shin, W. S., & Ko, S. O. (2004). Reductive dechlorination of chlorinated biphenyls by palladized zero-valent metals. J Environ Sci Health A Tox Hazard Subst Environ Eng, 39(5), 1177-1188. doi:10.1081/ese-120030302

Kirschling, T. L., Gregory, K. B., Minkley, J. E. G., Lowry, G. V., & Tilton, R. D. (2010). Impact of Nanoscale Zero Valent Iron on Geochemistry and Microbial Populations in Trichloroethylene Contaminated Aquifer Materials. Environmental Science & Technology, 44(9), 3474-3480. doi:10.1021/es903744f

Kocur, C. M., Lomheim, L., Boparai, H. K., Chowdhury, A. I., Weber, K. P., Austrins, L. M., . . . O’Carroll, D. M. (2015). Contributions of Abiotic and Biotic Dechlorination Following Carboxymethyl Cellulose Stabilized Nanoscale Zero Valent Iron Injection. Environ Sci Technol, 49(14), 8648-8656. doi:10.1021/acs.est.5b00719

Kocur, C. M., Lomheim, L., Molenda, O., Weber, K. P., Austrins, L. M., Sleep, B. E., . . . O’Carroll, D. M. (2016). Long-Term Field Study of Microbial Community and Dechlorinating Activity Following Carboxymethyl Cellulose-Stabilized Nanoscale Zero-Valent Iron Injection. Environ Sci Technol, 50(14), 7658-7670. doi:10.1021/acs.est.6b01745

Kublik, A., Deobald, D., Hartwig, S., Schiffmann, C. L., Andrades, A., von Bergen, M., . . . Adrian, L. (2016). Identification of a multi‐protein reductive dehalogenase complex in D ehalococcoides mccartyi strain CBDB 1 suggests a protein‐dependent respiratory electron transport chain obviating quinone involvement. Environmental microbiology, 18(9), 3044-3056.

Kumar, N., Chaurand, P., Rose, J., Diels, L., & Bastiaens, L. (2015). Synergistic effects of sulfate reducing bacteria and zero valent iron on zinc removal and stability in aquifer sediment. Chemical Engineering Journal, 260, 83-89. doi:10.1016/j.cej.2014.08.091

Kumar, N., Omoregie, E. O., Rose, J., Masion, A., Lloyd, J. R., Diels, L., & Bastiaens, L. (2014). Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. Water Res, 51, 64-72. doi:10.1016/j.watres.2013.09.042

Lacina, P., Dvorak, V., Vodickova, E., Barson, P., Kalivoda, J., & Goold, S. (2015). The Application of Nano-Sized Zero-Valent Iron for In Situ Remediation of Chlorinated Ethylenes in Groundwater: A Field Case Study. Water Environ Res, 87(4), 326-333. doi:10.2175/106143015X14212658613596

Lampron, K. J., Chiu, P. C., & Cha, D. K. (2001). Reductive dehalogenation of chlorinated ethenes with elemental iron: the role of microorganisms. Water Res, 35(13), 3077-3084. doi:10.1016/s0043-1354(01)00017-3

Li, A., Tai, C., Zhao, Z., Wang, Y., Zhang, Q., Jiang, G., & Hu, J. (2007). Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environ Sci Technol, 41(19), 6841-6846. doi:10.1021/es070769c

Li, X.-q., Cao, J., & Zhang, W.-x. (2008). Stoichiometry of Cr(VI) Immobilization Using Nanoscale Zerovalent Iron (nZVI): A Study with High-Resolution X-Ray Photoelectron Spectroscopy (HR-XPS). Industrial & Engineering Chemistry Research, 47(7), 2131-2139. doi:10.1021/ie061655x

Li, X.-q., Elliott, D. W., & Zhang, W.-x. (2006). Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects. Critical Reviews in Solid State and Materials Sciences, 31(4), 111-122. doi:10.1080/10408430601057611

Li, X., Wu, Y., Zhang, C., Liu, Y., Zeng, G., Tang, X., . . . Lan, S. (2016). Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron. Chemical Engineering Journal, 306, 393-400. doi:10.1016/j.cej.2016.07.079

Li, Z., Greden, K., Alvarez, P. J., Gregory, K. B., & Lowry, G. V. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol, 44(9), 3462-3467. doi:10.1021/es9031198

Liang, D. W., Yang, Y. H., Xu, W. W., Peng, S. K., Lu, S. F., & Xiang, Y. (2014). Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: mechanism and kinetics. J Hazard Mater, 278, 592-596. doi:10.1016/j.jhazmat.2014.06.030

Liu, F., Zhang, G., Liu, S., Fu, Z., Chen, J., & Ma, C. (2018). Bioremoval of arsenic and antimony from wastewater by a mixed culture of sulfate-reducing bacteria using lactate and ethanol as carbon sources. International Biodeterioration & Biodegradation, 126, 152-159. doi:10.1016/j.ibiod.2017.10.011

Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol, 39(5), 1338-1345. doi:10.1021/es049195r

Liu, Y., Phenrat, T., & Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environ Sci Technol, 41(22), 7881-7887. doi:10.1021/es0711967

Liu, Z., Wang, L., & Zhou, F. (1994). Quantitative structure-free energy relationship for the dehalogenation of halogenated aromatic compounds. Chemosphere, 29(8), 1683-1689. doi:10.1016/0045-6535(94)90315-8

Loffler, F. E., & Edwards, E. A. (2006). Harnessing microbial activities for environmental cleanup. Curr Opin Biotechnol, 17(3), 274-284. doi:10.1016/j.copbio.2006.05.001

Löffler, F. E., Ritalahti, K. M., & Zinder, S. H. (2013). Dehalococcoides and Reductive Dechlorination of Chlorinated Solvents. In Bioaugmentation for Groundwater Remediation (pp. 39-88).

Louie, T. M., & Mohn, W. W. (1999). Evidence for a chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1. J Bacteriol, 181(1), 40-46. doi:10.1128/JB.181.1.40-46.1999

Lowry, G. V., & Johnson, K. M. (2004). Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol, 38(19), 5208-5216. doi:10.1021/es049835q

Luo, J., Hu, J., Zhuang, Y., Wei, X., & Huang, X. (2013). Theoretical study on the radical anions and reductive dechlorination of selected polychlorinated dibenzo-p-dioxins. Chemosphere, 91(6), 765-770. doi:10.1016/j.chemosphere.2013.02.015

Machado, S., Pacheco, J. G., Nouws, H. P., Albergaria, J. T., & Delerue-Matos, C. (2015). Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci Total Environ, 533, 76-81. doi:10.1016/j.scitotenv.2015.06.091

Manning, B. A., Kiser, J. R., Kwon, H., & Kanel, S. R. (2007). Spectroscopic investigation of Cr (III)-and Cr (VI)-treated nanoscale zerovalent iron. Environmental Science & Technology, 41(2), 586-592.

Mapelli, F., Scoma, A., Michoud, G., Aulenta, F., Boon, N., Borin, S., . . . Daffonchio, D. (2017). Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms. Trends Biotechnol, 35(9), 860-870. doi:10.1016/j.tibtech.2017.04.003

Martin, J. E., Herzing, A. A., Yan, W., Li, X. Q., Koel, B. E., Kiely, C. J., & Zhang, W. X. (2008). Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir, 24(8), 4329-4334. doi:10.1021/la703689k

Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol, 28(12), 2045-2053. doi:10.1021/es00061a012

Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 28(12), 2045-2053.

Mohn, W. W., & Tiedje, J. M. (1992). Microbial reductive dehalogenation. Microbiol Rev, 56(3), 482-507. Retrieved from

Nadagouda, M. N., Castle, A. B., Murdock, R. C., Hussain, S. M., & Varma, R. S. (2010). In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem., 12(1), 114-122. doi:10.1039/b921203p

Nemecek, J., Pokorny, P., Lhotsky, O., Knytl, V., Najmanova, P., Steinova, J., . . . Cajthaml, T. (2016). Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Sci Total Environ, 563-564, 822-834. doi:10.1016/j.scitotenv.2016.01.019

Novak, P. J. (1998). Enhanced dechlorination of carbon tetrachloride and chloroform in the presence of elemental iron and methanogenic Archaea.

Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., . . . Driessen, M. D. (2005). Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol, 39(5), 1221-1230. doi:10.1021/es049190u

O’Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104-122. doi:10.1016/j.advwatres.2012.02.005

Orth, W. S., & Gillham, R. W. (1995). Dechlorination of trichloroethene in aqueous solution using Fe0. Environmental Science & Technology, 30(1), 66-71.

Parthasarathy, A., Stich, T. A., Lohner, S. T., Lesnefsky, A., Britt, R. D., & Spormann, A. M. (2015). Biochemical and EPR-spectroscopic investigation into heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. J Am Chem Soc, 137(10), 3525-3532. doi:10.1021/ja511653d

Payne, K. A., Quezada, C. P., Fisher, K., Dunstan, M. S., Collins, F. A., Sjuts, H., . . . Leys, D. (2015). Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature, 517(7535), 513-516. doi:10.1038/nature13901

Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M., & Tufenkji, N. (2010). Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol, 44(17), 6532-6549. doi:10.1021/es100598h

Phenrat, T., Cihan, A., Kim, H. J., Mital, M., Illangasekare, T., & Lowry, G. V. (2010). Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings. Environ Sci Technol, 44(23), 9086-9093. doi:10.1021/es102398e

Phenrat, T., Kim, H. J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe(0) nanoparticles in sand columns. Environ Sci Technol, 43(13), 5079-5085. doi:10.1021/es900171v

Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009). Adsorbed polyelectrolyte coatings decrease Fe(0) nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environ Sci Technol, 43(5), 1507-1514. doi:10.1021/es802187d

Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol, 41(1), 284-290. doi:10.1021/es061349a

Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34(12), 2564-2569.

Rittmann, B. E., Hausner, M., Loffler, F., Love, N. G., Muyzer, G., Okabe, S., . . . Wagner, M. (2006). A vista for microbial ecology and environmental biotechnology. Environ Sci Technol, 40(4), 1096-1103. doi:10.1021/es062631k

Roberts, A. L., Totten, L. A., Arnold, W. A., Burris, D. R., & Campbell, T. J. (1996). Reductive elimination of chlorinated ethylenes by zero-valent metals. Environmental Science & Technology, 30(8), 2654-2659.

Rosenthal, H., Adrian, L., & Steiof, M. (2004). Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing two Dehalococcoides strains. Chemosphere, 55(5), 661-669. doi:10.1016/j.chemosphere.2003.11.053

Rysavy, J. P., Yan, T., & Novak, P. J. (2005). Enrichment of anaerobic polychlorinated biphenyl dechlorinators from sediment with iron as a hydrogen source. Water Res, 39(4), 569-578. doi:10.1016/j.watres.2004.11.009

Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol, 42(9), 3349-3355. doi:10.1021/es071936b

Seshadri, R., Adrian, L., Fouts, D. E., Eisen, J. A., Phillippy, A. M., Methe, B. A., . . . Heidelberg, J. F. (2005). Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science, 307(5706), 105-108. doi:10.1126/science.1102226

Shanbhogue, S. S., Bezbaruah, A., Simsek, S., & Khan, E. (2017). Trichloroethene removal by separately encapsulated and co-encapsulated bacterial degraders and nanoscale zero-valent iron. International Biodeterioration & Biodegradation, 125, 269-276. doi:10.1016/j.ibiod.2017.08.005

Shi, D., Zhang, X., Wang, J., & Fan, J. (2018). Highly reactive and stable nanoscale zero-valent iron prepared within vesicles and its high-performance removal of water pollutants. Applied Catalysis B: Environmental, 221, 610-617. doi:10.1016/j.apcatb.2017.09.057

Song, H., & Carraway, E. R. (2005). Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol, 39(16), 6237-6245. doi:10.1021/es048262e

Tan, L. A., Fontes, R. B., & Byrne, R. W. (2014). Retrosigmoid approach for resection of an extraventricular choroid plexus papilloma in the cerebellopontine angle. Neurosurg Focus, 36(1 Suppl), 1. doi:10.3171/2014.V1.FOCUS13271

Tang, S. C., & Lo, I. M. (2013). Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res, 47(8), 2613-2632. doi:10.1016/j.watres.2013.02.039

Tanzadeh, J., Ghasemi, M. F., Anvari, M., & Issazadeh, K. (2020). Biological removal of crude oil with the use of native bacterial consortia isolated from the shorelines of the Caspian Sea. Biotechnology & Biotechnological Equipment, 34(1), 361-374. doi:10.1080/13102818.2020.1756408

Thompson, L. A., & Darwish, W. S. (2019). Environmental Chemical Contaminants in Food: Review of a Global Problem. J Toxicol, 2019, 2345283. doi:10.1155/2019/2345283

Tilston, E. L., Collins, C. D., Mitchell, G. R., Princivalle, J., & Shaw, L. J. (2013). Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environ Pollut, 173, 38-46. doi:10.1016/j.envpol.2012.09.018

Tratnyek, P. G., Scherer, M. M., Deng, B., & Hu, S. (2001). Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron. Water Res, 35(18), 4435-4443. doi:10.1016/s0043-1354(01)00165-8

Tso, C. P., & Shih, Y. H. (2015). The reactivity of well-dispersed zerovalent iron nanoparticles toward pentachlorophenol in water. Water Res, 72, 372-380. doi:10.1016/j.watres.2014.12.038

Vázquez-Núñez, E., Molina-Guerrero, C. E., Peña-Castro, J. M., Fernández-Luqueño, F., & de la Rosa-Álvarez, M. G. (2020). Use of Nanotechnology for the Bioremediation of Contaminants: A Review. Processes, 8(7). doi:10.3390/pr8070826

Velimirovic, M., Simons, Q., & Bastiaens, L. (2015). Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment. Chemosphere, 134, 338-345. doi:10.1016/j.chemosphere.2015.04.068

Wang, C.-B., & Zhang, W.-x. (1997). Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs. EnST, 31(7), 2154-2156.

Wang, S., Chen, S., Wang, Y., Low, A., Lu, Q., & Qiu, R. (2016). Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants? Biotechnol Adv, 34(8), 1384-1395. doi:10.1016/j.biotechadv.2016.10.004

Wang, T., Lin, J., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. Journal of Cleaner Production, 83, 413-419. doi:10.1016/j.jclepro.2014.07.006

Weathers, L. J., Parkin, G. F., & Alvarez, P. J. (1997). Utilization of cathodic hydrogen as electron donor for chloroform cometabolism by a mixed, methanogenic culture. Environmental Science & Technology, 31(3), 880-885.

Weber, E. J. (1996). Iron-mediated reductive transformations: investigation of reaction mechanism. Environmental Science & Technology, 30(2), 716-719.

Wei, Y. T., Wu, S. C., Yang, S. W., Che, C. H., Lien, H. L., & Huang, D. H. (2012). Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J Hazard Mater, 211-212, 373-380. doi:10.1016/j.jhazmat.2011.11.018

Wu, Y., Guan, C.-Y., Griswold, N., Hou, L.-y., Fang, X., Hu, A., . . . Yu, C.-P. (2020). Zero-valent iron-based technologies for removal of heavy metal(loid)s and organic pollutants from the aquatic environment: Recent advances and perspectives. Journal of Cleaner Production, 277. doi:10.1016/j.jclepro.2020.123478

Xiao, X., Sheng, G. P., Mu, Y., & Yu, H. Q. (2013). A modeling approach to describe ZVI-based anaerobic system. Water Res, 47(16), 6007-6013. doi:10.1016/j.watres.2013.07.025

Xie, Y., Dong, H., Zeng, G., Tang, L., Jiang, Z., Zhang, C., . . . Zhang, Y. (2017). The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. J Hazard Mater, 321, 390-407. doi:10.1016/j.jhazmat.2016.09.028

Xiu, Z. M., Gregory, K. B., Lowry, G. V., & Alvarez, P. J. (2010). Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol, 44(19), 7647-7651. doi:10.1021/es101786y

Xiu, Z. M., Jin, Z. H., Li, T. L., Mahendra, S., Lowry, G. V., & Alvarez, P. J. (2010). Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol, 101(4), 1141-1146. doi:10.1016/j.biortech.2009.09.057

Xu, G., Wang, J., & Lu, M. (2014). Complete debromination of decabromodiphenyl ether using the integration of Dehalococcoides sp. strain CBDB1 and zero-valent iron. Chemosphere, 117, 455-461. doi:10.1016/j.chemosphere.2014.07.077

Yang, M. I., Previdsa, M., Edwards, E. A., & Sleep, B. E. (2020). Two distinct Dehalobacter strains sequentially dechlorinate 1,1,1-trichloroethane and 1,1-dichloroethane at a field site treated with granular zero valent iron and guar gum. Water Res, 186, 116310. doi:10.1016/j.watres.2020.116310

Yi, Z.-J., Bin, L., Yang, Y.-Q., & Zou, J.-L. (2009). Treatment of simulated wastewater from in situ leaching uranium mining by zerovalent iron and sulfate reducing bacteria. Transactions of Nonferrous Metals Society of China, 19, s840-s844.

Zhang, M., He, F., Zhao, D., & Hao, X. (2011). Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Res, 45(7), 2401-2414. doi:10.1016/j.watres.2011.01.028

Zhang, W.-x. (2003). Nanoscale Iron Particles for Environmental Remediation: An Overview. Journal of Nanoparticle Research, 5(3/4), 323-332. doi:10.1023/a:1025520116015

Zhao, Q., Li, X., Xiao, S., Peng, W., & Fan, W. (2020). Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments. J Hazard Mater, 406, 124680. doi:10.1016/j.jhazmat.2020.124680

Zhao, Y. Y., Tao, F. M., & Zeng, E. Y. (2008). Theoretical study on the chemical properties of polybrominated diphenyl ethers. Chemosphere, 70(5), 901-907. doi:10.1016/j.chemosphere.2007.06.080

Zhuang, Y., Jin, L., & Luthy, R. G. (2012). Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: effects of particle properties and catalyst. Chemosphere, 89(4), 426-432. doi:10.1016/j.chemosphere.2012.05.078