ICH Validation of DPPH Assay Method: Some Interesting Medicinal Drugs

Authors: Fatiha El Babili1 & Nicole Linda-Mweze2 & Caroline Vincent 2 & Romain Laleman3 & Arthur Hourugou3
1Jardin Botanique Henri Gaussen Université Paul Sabatier Toulouse III, Toulouse, France
2Ecole préparatoire de Chimie, Lycée d’Enseignement Général, 26, Toulouse, France
3IUT Paul Sabatier Toulouse III – site Castres Avenue Georges Pompidou F- 81104 Castre, France

Abstract: Background and Aim: As part of our antioxidant plants screening project, we conducted a phytochemical study on their antioxidant activity to provide a standard and reliable assessment tool. To carry out this extensive screening, in compliance with regulatory requirements in pharmaceutical field, we have undertaken validation of our DPPH assay. This validation is in accordance with ICH standards. Indeed, this validation procedure has a very broad scope. It applies to any analysis procedure for plant raw materials control.
Method: DPPH test created by Blois and adapted for our raw extracts study is carried out using a UV spectrophotometer at 516 nm, as a monitoring wavelength. The ICH standards are then studied using an appropriate extracts and samples number for relevant statistical analysis. The reference substance chosen is Trolox.
Results: To validate this method, we will quantify antioxidant properties in two plant drugs traditionally known for their property such as Argania spinosa (fruits and leaves) and Lawsonia inermis (ethanolic extracts and decoctions). Our results allow to specify and quantify these properties and to confirm traditional ancient use.
Conclusions: The method developed is therefore recommended as a quality control protocol in phytochemical screening. This last screening is always necessary before starting anticancer properties plants study. Plants are gradually regaining interest and a preliminary screening method will can be included in specific monograph. Thus these monographs could help to promote the heritage of traditional medicine; still alive and to which the WHO seeks to restore its place (latest resolution 2014-2023).

Keywords: ICH, Linearity, Antioxydant Ability, Argania spinosa, Lawsonia inermis, Trolox

Download the PDF Document

doi: 10.23918/eajse.v6i2p117



Antioxidant Activity – Medallion Labs. (n.d.). Retrieved on November 7, 2020 from https://www.yumpu.com/en/document/read/6157100/antioxidant-activity-medallion-labs

Berger, R. G., Lunkenbein, S., Ströhle, A., & Hahn, A. (2012). Antioxidants in Food: Mere myth or magic medicine? Crit. Rev. Food Sci. Nutr.52 (2), 162–171. https://doi.org/10.1080/10408398.2010.499481.

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181 (4617), 1199–1200. https://doi.org/10.1038/1811199a0.

Deng, L. J., Lei, Y. H., Chiu, T. F., Qi, M., Gan, H., Zhang, G., Peng, Z. D., Zhang, D. M., Chen, Y. F., & Chen, J. X. (2019). The anticancer effects of paeoniflorin and its underlying mechanisms: Nat. Prod. Commun. https://doi.org/10.1177/1934578X19876409.

ELBabili. (2020). Reflection on medicinal plants, especially antivirals and how to reconsider ethnobotany as an interesting way for health preservation. Afr. J. Pharm. Pharmacol.

Garcia, S. (2020). Pandemics and traditional plant-based remedies. a historical-botanical review in the era of COVID19. Front. Plant Sci.11. https://doi.org/10.3389/fpls.2020.571042. Guide technique pour l’élaboration des monographies. 80.

Kedare, S. B., & Singh, R. P. (2011). Genesis and development of dpph method of antioxidant assay. J. Food Sci. Technol, 48 (4), 412–422. https://doi.org/10.1007/s13197-011-0251-1.

Lee, I. H., Lee, H. S., Kang, K., Park, S. I., Kwon, T., Moon, S. J., Lee, C. H., & Lee, D. Y. (2020). Influence of decoction duration of FDY2004 on its physicochemical components and antioxidant and antiproliferative activities. Nat. Prod. Commun.https://doi.org/10.1177/1934578X20968437.

Leváková, Ľ.,& Lacko-Bartošová, M. (2017). Phenolic acids and antioxidant activity of wheat species: A Review. Agric. Polnohospodárstvo, 63 (3), 92–101. https://doi.org/10.1515/agri-2017-0009.

Lizard, G., Filali-Zegzouti, Y., & El Midaoui, A. (2017). Benefits of argan oil on human health—May 4–6 2017, Errachidia, Morocco. Int. J. Mol. Sci.18 (7). https://doi.org/10.3390/ijms18071383.

Nono, R. N., Barboni, L., Teponno, R. B., Quassinti, L., Bramucci, M.,Vitali, L. A., Petrelli, D., Lupidi, G., & Tapondjou, A. L. (2014). Antimicrobial, antioxidant, anti-inflammatory activities and phytoconstituents of extracts from the roots of dissotistholloniicogn. (Melastomataceae). South African Journal of Botany, 93, 19-26. https://doi.org/10.1016/j.sajb.2014.03.009.

Organisationmondiale de la santé. Stratégie de l’OMS pour la médecinetraditionnelle pour 2014-2023; Organisation mondiale de la santé: Genève, 2013.

Prior, R. L., Wu, X.,& Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem.53 (10), 4290–4302. https://doi.org/10.1021/jf0502698.

Silva, J. T. do P., Silva, A. C.,Geiss, J. M. T., de Araújo, P. H. H., Becker, D., Bracht, L., Leimann, F. V., Bona, E., Guerra, G. P., & Gonçalves, O. H. (2017). Analytical validation of an ultraviolet–visible procedure for determining lutein concentration and application to lutein-loaded nanoparticles. Food Chem.230, 336–342. https://doi.org/10.1016/j.foodchem.2017.03.059.

Singh, S., & Singh, R. P. (2008). In vitro methods of assay of antioxidants: An overview. Food Rev. Int.24 (4), 392–415. https://doi.org/10.1080/87559120802304269.

Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 10 (11). https://doi.org/10.3390/nu10111618.