4,4’-bis-[4-(substituted-phenyl)-1-azetidinyl-2-one]-biphenyl Via an Improved Procedure Using Zn-Cu Couple in Sonic Reformatsky Reaction

Authors: Faiq H.S. Hussain1 & Lana H.R. Al-Chawshili1  
1TIU-Research Center, Tishk International University, Erbil, Iraq
2Chemistry Department, College of Education, University of Salahaddin, Erbil, Iraq

Abstract:Considerable interest has been focused on azetidinone (β-lactam) compounds for their broad spectrum antimicrobial activity. Therefore, a new series of bis-azetidinone compounds (5a-l) have been synthesized via the reaction of new Schiff bases (3a-l) with ethylbromoacetate and Zn-Cu couple in THF under nitrogen pressure with ultrasonic agitation. The structure of isolated products was confirmed spectroscopically. On the other hand, the prepared compounds were tested in vitro for their antimicrobial activity against Staphylococcus aurous and Escherichia coli.

Keywords: Reformatsky Reaction, Beta Lactam, Azetidinone, Zn-Cu Coupling, Schiff Base

Download the PDF Document from here.


doi: 10.23918/eajse.v4i4p148


References

Barlam, T. F., Cosgrove, S. E., Abbo, L. M., MacDougall, C., Schuetz, A. N., Septimus, E. J., … & Hamilton, C. W. (2016). Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clinical Infectious Diseases, 62(10), e51-e77.

Brandi, A., Cicchi, S., & Cordero, F. M. (2008). Novel syntheses of azetidines and azetidinones. Chemical Reviews, 108(9), 3988-4035.

Dalhoff, A., Janjic, N., & Echols, R. (2006). Redefining penems. Biochemical pharmacology, 71(7), 1085-1095.

Gilman, H., & Speeter, M. (1943). The Reformatsky reaction with benzalaniline. Journal of the American Chemical Society, 65(11), 2255-2256.

Han, B. H., & Boudjouk, P. (1982). Organic sonochemistry. Sonic acceleration of the Reformatsky reaction. The Journal of Organic Chemistry, 47(25), 5030-5032.

Huang, X. L., Chen, X. Y., & Ye, S. (2009). Enantioselective synthesis of aza-β-lactams via NHC-catalyzed [2+ 2] cycloaddition of ketenes with diazenedicarboxylates. The Journal of organic chemistry, 74(19), 7585-7587.

Hussain, F.H.S. (2003). Synthesis of Some New p-Phenylene-Bis [4-Substitutedbenzo-azetidine-2-one] Via the Ultrasonic Promoted Reaction. ZANCO, 15(2), 5-7.

Kamath, A., & Ojima, I. (2012). Advances in the chemistry of β-lactam and its medicinal applications. Tetrahedron, 68(52), 10640.

Kim, I., Roh, S. W., Lee, D. G., & Lee, C. (2014). Rhodium-catalyzed oxygenative [2+ 2] cycloaddition of terminal alkynes and imines for the synthesis of β-lactams. Organic Letters, 16(9), 2482-2485.

Kingston, D. G. (2009). Tubulin-interactive natural products as anticancer agents. Journal of Natural Products, 72(3), 507-515.

LeGoff, E. (1964). Cyclopropanes from an easily prepared, highly active Zinc—Copper couple, dibromomethane, and olefins. The Journal of Organic Chemistry, 29(7), 2048-2050.

Li, B., Wang, Y., Du, D. M., & Xu, J. (2007). Notable and obvious ketene substituent-dependent effect of temperature on the stereoselectivity in the Staudinger reaction. The Journal of Organic Chemistry, 72(3), 990-997.

Li, C.J., Chan, T.H. (1999). Organic syntheses using indium-mediated and catalyzed reactions in aqueous media. Tetrahedron, 55(37), 11149-11176.

Lu, H., & Li, C. (2006). General and Highly Efficient Synthesis of 2-Alkylideneazetidines and β-Lactams Via Copper-Catalyzed Intramolecular N-Vinylation. Organic Letters, 8(23), 5365-5367.

Meredith, H. R., Srimani, J. K., Lee, A. J., Lopatkin, A. J., & You, L. (2015). Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nature Chemical Biology, 11(3), 182.

Mohamed, M. A. (2016). Sonochemistry (Applications of Ultrasound in Chemical Synthesis and Reactions): A Review Part I. Journal of Pharmaceutical Sciences, 53, 108-122.

Mukerjee, A. K., & Singh, A. K. (1978). β-Lactams: retrospect and prospect. Tetrahedron, 34(12), 1731-1767.

Park, S. H., Lee, S. Y., & Bose, A. K. (2001). An Efficient and Eco-friendly Approach to 15 N-Unsubstituted β-Lactams: 15 N-Labled Synthons for Taxol and Its Analogs. Bull. Korean Chem. Soc, 22(5), 493-498
Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. A. (2008). Introduction to Spectroscopy. Cengage Learning. 4th ed. Washington.

Santaniello, E., & Manzocchi, A. (1977). Use of the Zn-Cu couple in the Reformatsky reaction. Synthesis, 1977(10), 698-699.

Srirajan, V., Deshmukh, A. R. A. S., & Bhawal, B. M. (1996). An efficient synthesis of cis-3-hydroxy-4-phenyl-β-lactams: Precursor for taxol side chain. Tetrahedron, 52(15), 5585-5590.

Storz, T., Bernet, B., & Vasella, A. (1999). β‐Lactams from D‐Erythrose‐Derived Imines: A Convenient Synthesis of 2, 3‐Diamino‐2, 3‐dideoxy‐D‐mannonic‐Acid Derivatives. Helvetica Chimica Acta, 82(12), 2380-2412.

Tsukamoto, T., & Kitazume, T. (1992). Reformatsky Reaction of Ethyl 4-Chloro-4, 4-difluorocrotonate Preparation of α-Substituted 4, 4-Difluoro-3-butenoates. Synlett, 1992(12), 977-979.

Zhu, L., Xiong, Y., & Li, C. (2014). Synthesis of α-methylene-β-lactams via PPh3-catalyzed umpolung cyclization of propiolamides. The Journal of Organic Chemistry, 80(1), 628-633.