**Authors: **Diyari Abdulalrahman Mohammed^{1} & Younis Mustafa Alshkane^{1} & Zozk Kawa Abdalqadir^{1}

^{1&2}Department of Civil Engineering, University of Sulaimani, Iraq

^{3}Civil Engineering Department, College of Engineering, University of Sulaimani, Iraq

**Abstract:**The Uniaxial Compressive Strength (UCS) and Young’s modulus (E) of sedimentary rocks are the most significant geotechnical parameters for rock classifications and the stability analysis of the foundation of building and underground structures. The UCS and E can be predicted using a non-destructive method such as the Ultrasonic Pulse Velocity (UPV) test. Many empirical equations have been proposed by the researchers to predict the mechanical properties of rock materials using UPV; however, the evaluation of these equations has not been studied yet according to authors’ knowledge. This study aims to find out the most reliable empirical equation to predict the UCS and E using UPV test for sedimentary rocks. The reliability of empirical equation was studied using statistical analysis of data from this study and data of literature. The most reliable empirical equations to predict the UCS and E from UPV for sedimentary rocks have been selected based on R2 and RMSE.

**Keywords: **Sedimentation, Ultrasonic Pulse Velocity, Empirical Equations, Sedimentary Rocks

Download the PDF Document **from here**.

**References**

ASTM standards 4.08, Philadelphia. Babuska, V., & Pros, Z. (1984). Velocity anisotropy in granodiorite and quartzite due to the distribution of microcracks. Geophysics. J. R. Astron. Soc., 76(1), 121–127.

Armaghani, D. J., Amin, M. F. M., Yagiz, S., Faradonbeh, R. S., & Abdullah, R. A. (2016). Prediction of the uniaxial compressive strength of sandstone using various modeling techniques. International Journal of Rock Mechanics and Mining Sciences, 85, 174-186.

Aşcı, M., Kaplanvural, İ., Karakaş, A., Şahin, Ö. K., & Kurtuluş, C. (2017). Correlation of physical and mechanical properties with ultrasonic pulse velocities of sandstones in Çenedağ, Kocaeli-Turkey. International Journal of Advanced Geosciences, 5(2), 109-115.

Alshkane, Y. M., Daoud, H. S., & Rashed, K. A., (2018). Mechanical and Petrological Properties of Gercus Formation in Dukan Area, Kurdistan of Iraq. JZS (Part A), 5(1), 27-39.

Babacan, A. E., Ersoy, H., & Gelişli, K. (2012). Determination of physical, mechanical and elastic properties of the rocks with ultrasonic velocity technique and time–frequency analysis: A case study on the beige limestones (NE Turkey). Jeoloji Mühendisliği Dergisi, 36, 63-73.

Birch, F. (1960). The velocity of compressional waves in rocks to 10 kilobars: 1. Journal of Geophysical Research, 65(4), 1083-1102.

Birch, F. (1961). The velocity of compressional waves in rocks to 10 kilobars: 2. Journal of Geophysical Research, 66(7), 2199-2224.

Briševac, Z., Hrženjak, P., & Buljan, R. (2017). Models for estimating the uniaxial compressive strength and elastic modulus. Građevinar, 68(01.), 19-28.

Brown, E. (1981). ISRM suggested methods. Rock characterization testing and monitoring. London: Royal School of Mines.

Butel, N., Hossack, A., & Kizil, M. S. (2014). Prediction of in situ rock strength using sonic velocity.

Chary, K. B., Sarma, L. P., Lakshmi, K. P., Vijayakumar, N. A., Lakshmi, V. N., & Rao, M. V. M. S. (2006).

Evaluation of engineering properties of rock using ultrasonic pulse velocity and uniaxial compressive strength. In Proc. National Seminar on Non-Destructive Evaluation, Hyderabad (pp. 379-385).

Çobanoğlu, İ., & Çelik, S. B. (2008). Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bulletin of Engineering Geology and the Environment, 67(4), 491-498.

Deere, D. U., & Miller, R. (1966). Engineering classification and index properties for intact rock. Retrieved from https://www. apps.dtic.mil.

Diamantis, K., Gartzos, E., & Migiros, G. (2009). Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: test results and empirical relations. Engineering Geology, 108(3-4), 199-207.

Freyburg, E. (1972). Der Untere und mittlere Buntsandstein SW-Thuringen in seinen gesteinstechnicschen Eigenschaften. Deustche Gesellschaft Geologische Wissenschaften. A; Berlin, 176, 911-919.

Golubev, A. A., & Rabinovich, G. Y. (1976). Resultaty primeneia appartury akusticeskogo karotasa dlja predeleina proconstych svoistv gornych porod na mestorosdeniaach tverdych isjopaemych. Prikl. Geofiz. Moskva, 73, 109-116.

Goktan, R. M. (1988). Theoretical and practical analysis of rock rippability. Ph. D. thesis, 108.

Ghafoori, M., Rastegarnia, A., & Lashkaripour, G. R. (2018). Estimation of static parameters based on dynamical and physical properties in limestone rocks. Journal of African Earth Sciences, 137, 22-31.

Hakan, E., & Kanik, D. (2012). Multi criteria decision-making analysis based methodology for predicting carbonate rocks’ uniaxial compressive strength. Earth Sciences Research Journal, 16(1), 65-74.

Kahraman, S. (2001). Evaluation of simple methods for assessing the uniaxial compressive strength of the rock. International Journal of Rock Mechanics and Mining Sciences, 38(7), 981-994.

Kahraman, S. (2002). Estimating the direct P-wave velocity value of intact rock from indirect laboratory measurements. International Journal of Rock Mechanics and Mining Sciences, 39(1), 101-104.

Kurtulus, C., Bozkurt, A., & Endes, H. (2012). Physical and mechanical properties of serpentinized ultrabasic rocks in NW Turkey. Pure and Applied Geophysics, 169(7), 1205-1215.

Militzer, M. A. S., & Stoll, R. (1973). Einige Beitrageder geophysics zur primadatenerfassung im Bergbau. Neue Bergbautechnik, Lipzig, 3(1), 21-25.

Moradian, Z., & Behnia, M. (2009). Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test. International Journal of Geomechanics, 9(1), 14-19.

Mishra, D. A., & Basu, A. (2013). Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Engineering Geology, 160, 54-68.

Najibi, A. R., Ghafoori, M., Lashkaripour, G. R., & Asef, M. R. (2015). Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. Journal of Petroleum Science and Engineering, 126, 78-82.

Nefeslioglu, H. A. (2013). Evaluation of geo-mechanical properties of very weak and weak rock materials by using non-destructive techniques: Ultrasonic pulse velocity measurements and reflectance spectroscopy. Engineering Geology, 160, 8-20.

Oyler, D. C., Mark, C., & Molinda, G. M. (2010). In situ estimation of roof rock strength using sonic logging. International Journal of Coal Geology, 83(4), 484-490.

Reyer, D., & Philipp, S. (2014). Empirical relations of rock properties of outcrop and core samples from the Northwest German Basin for geothermal drilling. Geothermal Energy Science, 2(1), 21.

Stan-Kłeczek, I. (2016). The study of the elastic properties of carbonate rocks on a base of laboratory and field measurement. Acta Montanistica Slovaca, 21(1),76-83.

Vasanelli, E., Calia, A., Colangiuli, D., Micelli, F., & Aiello, M. A. (2016). Assessing the reliability of non-destructive and moderately invasive techniques for the evaluation of the uniaxial compressive strength of stone masonry units. Construction and Building Materials, 124, 575-581.

Wilkinson, B. H., McElroy, B. J., Kesler, S. E., Peters, S. E., & Rothman, E. D. (2009). Global geologic maps are tectonic speedometers—Rates of rock cycling from area-age frequencies. Geological Society of America Bulletin, 121(5-6), 760-779.

Wang, P., Xu, J., Fang, X., Wang, P., Zheng, G., & Wen, M. (2017). Ultrasonic time-frequency method to evaluate the deterioration properties of rock suffered from freeze-thaw weathering. Cold Regions Science and Technology, 143, 13-22.

Yasar, E., & Erdogan, Y. (2004). Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences, 41(4), 871-875.

Yurdakul, M., & Akdas, H. (2013). Modeling uniaxial compressive strength of building stones using non-destructive test results as neural networks input parameters. Construction and Building Materials, 47, 1010-1019.

Yagiz, S. (2011). P-wave velocity test for assessment of geotechnical properties of some rock materials. Bulletin of Materials Science, 34(4), 947.