Characterization of ZnO Nanoparticles Prepared from Green Synthesis Using Euphorbia Petiolata Leaves

Authors:  Azeez Abdullah Barzinjy1&2 & Samir Mustafa Hamad3&4 & Haidar Jalal Ismael1
1Department of Physics, College of Education, Salahaddin University, Erbil, Iraq
2Department of Physics Education, Faculty of Education, Ishik University, Erbil, Iraq
3Research Centre, Cihan University, Erbil, Iraq
4Scientific Research Centre, Delzyan Campus, Soran University, Soran, Iraq

Abstract:  This investigation is one of the early studies for preparation of zinc oxide (ZnO) nanoparticles from green synthesis utilizing Euphorbia petiolata leaves, which are collected from Kurdistan region in Iraq, as a reducing and stabilizing agent throughout an easy and green synthesis method. The chemical interaction of Euphorbia petiolata leaves extract with the aqueous mixture of zinc nitrate and the oxidation through galvanizing process professionally produced the reduction of the zinc ions and creation of zinc oxide nanoparticles. The steadiness, cleanliness and crystalline nature of green synthesized nanoparticles were verified by means of UV-vis spectroscopy, EDAX and XRD procedures. UV-vis spectroscopy of prepared zinc colloidal solution displayed absorption maxima at 360 nm. XRD analysis revealed that Zn nanoparticles approve the hexagonal-wurtzite construction with a typical particle size of 55-60 nm. Likewise, the pattern of promising process result in creation of nanoparticles was explained. The important advantages of this process are: short reaction-time, fast, distinct stage, environmentally friendly synthesis of the ZnO nanoparticles, removal of harmful ingredients, and reproducibility of the process.

Keywords: Green Synthesis Nanoparticles, ZnO Nanoparticles, Euphorbia Petiolate
Download the PDF Document from here.


doi: 10.23918/eajse.v4i3sip74


References

Ansari, A. A., Alhoshan, M., Alsalhi, M. S., & Aldwayyan, A. S. (2010). Prospects of nanotechnology in clinical immunodiagnostics. Sensors, 10(7), 6535-6581.

Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basu, R., & Nandy, P. (2015). Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances, 5(7), 4993-5003.

Bergman, L., & McHale, J. (2016). Handbook of Luminescent Semiconductor Materials. CRC Press.

Byrappa, K., Ohara, S., & Adschiri, T. (2008). Nanoparticles synthesis using supercritical fluid technology towards biomedical applications. Advanced Drug Delivery Reviews, 60(3), 299-327.

Gholipour, M. R., Dinh, C.-T., Béland, F., & Do, T.-O. (2015). Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale, 7(18), 8187-8208.

Jamdagni, P., Khatri, P., & Rana, J. S. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University – Science, 30(2), 168-175. doi: https://doi.org/10.1016/j.jksus.2016.10.002

Janotti, A., & Van de Walle, C. G. (2009). Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 72(12), 126501.

Jassbi, A. R. (2006). Chemistry and biological activity of secondary metabolites in Euphorbia from Iran. Phytochemistry, 67(18), 1977-1984.

Karan, S., Sarkar, S., Sarma, D., Kundu, P., Ravishankar, N., & Pradhan, N. (2011). Thermally controlled cyclic insertion/ejection of dopant ions and reversible zinc blende/wurtzite phase changes in ZnS nanostructures. Journal of the American Chemical Society, 133(6), 1666-1669.

Kavitha, M., John, H., Gopinath, P., & Philip, R. (2013). Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties. Journal of Materials Chemistry C, 1(23), 3669-3676.

Kharissova, O. V., Dias, H. R., Kharisov, B. I., Pérez, B. O., & Pérez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in Biotechnology, 31(4), 240-248.

Kumar, S., & Nann, T. (2006). Shape control of II–VI semiconductor nanomaterials. Small, 2(3), 316-329.

Lohse, S. E., & Murphy, C. J. (2012). Applications of colloidal inorganic nanoparticles: from medicine to energy. Journal of the American Chemical Society, 134(38), 15607-15620.

McFarland, A. G. (2018). My Revision Notes: CCEA GCSE Chemistry: Hodder Education.

Nagarajan, R. (2008). Nanoparticles: building blocks for nanotechnology. Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization, 996, 2-14.

Naito, M., Yokoyama, T., Hosokawa, K., & Nogi, K. (2018). Nanoparticle Technology Handbook. Elsevier Science.

Nasrollahzadeh, M., Sajjadi, M., Maham, M., Sajadi, S. M., & Barzinjy, A. A. (2018). Biosynthesis of the palladium/sodium borosilicate nanocomposite using Euphorbia milii extract and evaluation of its catalytic activity in the reduction of chromium (VI), nitro compounds and organic dyes. Materials Research Bulletin, 102, 24-35.

Pahlevani, A. H., & Akhani, H. (2011). Seed morphology of Iranian annual species of Euphorbia (Euphorbiaceae). Botanical journal of the Linnean Society, 167(2), 212-234.

Sattler, K. D. (2016). Handbook of Nanophysics: Nanoparticles and Quantum Dots: CRC Press.

Schmid, G. Ã. (2011). Nanoparticles: From Theory to Application: Wiley.

Senthilkumar, N., Nandhakumar, E., Priya, P., Soni, D., Vimalan, M., & Potheher, I. V. (2017). Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New Journal of Chemistry, 41(18), 10347-10356.

Sghaier, M. B., Skandrani, I., Nasr, N., Franca, M.-G. D., Chekir-Ghedira, L., & Ghedira, K. (2011). Flavonoids and sesquiterpenes from Tecurium ramosissimum promote antiproliferation of human cancer cells and enhance antioxidant activity: A structure–activity relationship study. Environmental Toxicology and Pharmacology, 32(3), 336-348.

Shen, X., Hu, Y., Xu, G., Chen, W., Xu, K., Ran, Q., . . . Cai, K. (2014). Regulation of the biological functions of osteoblasts and bone formation by Zn-incorporated coating on microrough titanium. ACS Applied Materials & Interfaces, 6(18), 16426-16440.

Suresh, D., Nethravathi, P., Rajanaika, H., Nagabhushana, H., & Sharma, S. (2015). Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Materials Science in Semiconductor Processing, 31, 446-454.

Tomashyk, V. (2015). Multinary Alloys Based on II-VI Semiconductors. CRC Press.

Wang, S., Fan, Z., Koster, R. S., Fang, C., Van Huis, M. A., Yalcin, A. O., . . . Vlugt, T. J. (2014). New ab initio based pair potential for accurate simulation of phase transitions in ZnO. The Journal of Physical Chemistry C, 118(20), 11050-11061.

Yang, L. (2015). Nanotechnology-enhanced orthopedic materials: Fabrications, applications and future trends. Woodhead Publishing.

Yuvakkumar, R., Suresh, J., Nathanael, A., Sundrarajan, M., & Hong, S. (2014). Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium Lappaceum L.) peel extract and its antibacterial applications. Materials Science and Engineering: C, 41, 17-27.

Zak, A. K., Majid, W. A., Mahmoudian, M., Darroudi, M., & Yousefi, R. (2013). Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Advanced Powder Technology, 24(3), 618-624.

Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., & Cai, W. (2010). Blue Luminescence of ZnO nanoparticles based on non‐equilibrium processes: defect origins and emission controls. Advanced Functional Materials, 20(4), 561-572.