Calculation of the Band Structure for GaAs and ZnTe Nanoparticles from the Density Functional Theory Based on LDA, GGA and HSE06

Authors: Botan Jawdat Abdullah1 & Mustafa Saeed Omar2
1&2Department of Physics, College of Science, Salahaddin University, Erbil, Iraq

Abstract:  The energy band structure and density of state (DOS) are calculated using density functional theory (DFT) for GaAs and ZnTe semiconductors for both the bulk and nanoparticles (NPs) and implemented in the CASTEP code. The calculations are employed within the local density approximation (LDA), generalized gradient approximation (GGA), and hybrid functionals of Heyd-Scuseria-Ernzerh of (HSE06). The DFT results within both LDA and GGA give lower values of band gap energies, while the HSE06 yields good results relative to the experimental data. Thus, HSE06 is employed to study the effect of size on band structures of semiconductor NPs. The results presented here illustrated that band gap increases with the reduction of NPs size due to the increase in lattice parameters.

Keywords: Nanoparticles, Energy Band Gap, Density of States, Density Functional Theory, HSE06
Download the PDF Document from here.


doi: 10.23918/eajse.v4i3sip31


References

Abdullah, B. J., Omar, M. S., & Jiang, Q. (2017). Size Effects on Cohesive Energy, Debye Temperature and Lattice Heat Capacity from First-Principles Calculations of Sn Nanoparticles. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 1-4.

Boutaiba, F., Zaoui, A., & Ferhat, M. (2009). Fundamental and transport properties of ZnX, CdX and HgX (X= S, Se, Te) compounds. Superlattices and Microstructures, 46(6), 823-832.

Brothers, E. N., Izmaylov, A. F., Normand, J. O., Barone, V., & Scuseria, G. E. (2008). Accurate solid-state band gaps via screened hybrid electronic structure calculations. AIP.

Chadi, D., & Cohen, M. L. (1975). Tight‐binding calculations of the valence bands of diamond and zincblende crystals. Physica Status Solidi B, 68(1), 405-419.

Feynman, R. P. (1992). There’s plenty of room at the bottom [data storage]. Journal of Microelectromechanical Systems, 1(1), 60-66.

Gleiter, H. (2000). Nanostructured materials: basic concepts and microstructure. Acta Materialia, 4, 8(1), 1-29.

Green, M. A., & Bremner, S. P. (2017). Energy conversion approaches and materials for high-efficiency photovoltaics. Nature Materials, 16(1), 23.

Green, M. A., Htiuawa, Y., Warta, W., Dunlop, E. D., Levi, D. H., Hohl-Ebinger, J., & Ho-Baillie, A. W. (2017). Solar cell efficiency tables (version 50). Progress in Photovoltaics, 25(NREL/JA-5J00-68932.

Gunshor, R. L. (1997). II-VI blue/green light emitters: Device physics and epitaxial growth. Acad. Press.

Gürel, H. H., & Ünlü, H. (2013). Density functional and tight binding theories of electronic properties of II–VI heterostructures. Materials Science in Semiconductor Processing, 16(6), 1619-1628.

Harrison, W. A. (1994). Tight-binding methods. Surface Science, 299, 298-310.

Henderson, T. M., Paier, J., & Scuseria, G. E. (2011). Accurate treatment of solids with the HSE screened hybrid. Physica Status Solidi (B), 248(4), 767-774.

Heyd, J., Peralta, J. E., Scuseria, G. E., & Martin, R. L. (2005). Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. The Journal of Chemical Physics, 123(17), 174101.

Heyd, J., & Scuseria, G. E. (2004). Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. The Journal of Chemical Physics, 121(3), 1187-1192.

Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2003). Hybrid functionals based on a screened Coulomb potential. The Journal of Chemical Physics, 118(18), 8207-8215.

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), B864.

Hur, J.-H., & Jeon, S. (2016). III–V compound semiconductors for mass-produced nano-electronics: theoretical studies on mobility degradation by dislocation. Scientific Reports, 6, 22001.

Jiang, Q., & Yang, C. (2008). Size effect on the phase stability of nanostructures. Current Nanoscience, 4(2), 179-200.

Jun, Y.W., Choi, C.-S., & Cheon, J. (2001). Size and shape controlled ZnTe nanocrystals with quantum confinement effect. Chemical Communications, 1, 101-102.

Khan, I., Saeed, K., & Khan, I. (2017). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry.

Kher, S., & Wells, R. (1996). Synthesis and characterization of colloidal nanocrystals of capped gallium arsenide. Nanostructured Materials, 7(6), 591-603.

Kitai, A. (2011). Principles of Solar Cells, LEDs and Diodes: The role of the PN junction: John Wiley & Sons.

Kohn, W., Becke, A. D., & Parr, R. G. (1996). Density functional theory of electronic structure. The Journal of Physical Chemistry, 100(31), 12974-12980.

Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140 (4A), A1133.

Langreth, D. C., & Perdew, J. P. (1980). Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Physical Review B, 21(12), 5469.

Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108(6), 2064-2110.

Marsman, M., Paier, J., Stroppa, A., & Kresse, G. (2008). Hybrid functionals applied to extended systems. Journal of Physics: Condensed Matter, 20(6), 064201.

Meyers, H., & Myers, H. (1997). Introductory solid state physics. CRC press.

Mishra, R., Militky, J., Baheti, V., Huang, J., Kale, B., Venkataraman, M., . . . & Wang, Y.(2014) .The production, characterization and applications of nanoparticles in the textile industry. Textile Progress, 46(2), 133-226.

Moller, H. J. (1991). Semiconductors for solar cell applications. Progress in Materials Science, 35(3-4), 205-418.

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188.

Omar, M. (2007). Lattice thermal expansion for normal tetrahedral compound semiconductors. Materials Research Bulletin, 42(2), 319-326.

Omar, M. (2012). Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials. Materials Research Bulletin, 47(11), 3518-3522.

Omar, M. (2016). Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles. International Journal of Thermophysics, 37(1), 11.

Polman, A., Knight, M., Garnett, E. C., Ehrler, B., & Sinke, W. C. (2016). Photovoltaic materials: Present efficiencies and future challenges. Science, 352(6283), aad4424.

Ponce, F., & Bour, D. (1997). Nitride-based semiconductors for blue and green light-emitting devices. Nature, 386(6623), 351.

Sakly, A., Safta, N., Mejri, H., & Lamine, A. B. (2011). The electronic states calculated using the sinusoidal potential for Cd1− xZnxS quantum dot superlattices. Journal of Alloys and Compounds, 509(5), 2493-2495.

Sze, S. M. (2008). Semiconductor devices: physics and technology: John Wiley & Sons.

Tiwari, J. N., Tiwari, R. N., & Kim, K. S. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 57(4), 724-803.

Vogl, á., Hjalmarson, H. P., & Dow, J. D. (1983). A semi-empirical tight-binding theory of the electronic structure of semiconductors. Journal of Physics and Chemistry of Solids, 44(5), 365-378.

Vurgaftman, I., Meyer, J. á., & Ram-Mohan, L. á. (2001). Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics,11(89), 5815-5875.

Wei, S.-H., & Zunger, A. (1999). Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends. Physical Review B, 60(8), 5404.

Wooten, F. (2013). Optical properties of solids. Academic press.

Zhang, Z., Li, J., & Jiang, Q. (2000). Modelling for size-dependent and dimension-dependent melting of nanocrystals. Journal of Physics D: Applied Physics, 33(20), 2653.

Zhao, M., & Jiang, Q. (2004). Melting and surface melting of low-dimensional In crystals. Solid State Communications, 130(1-2), 37-39.

Zhao, Y., & Truhlar, D. G. (2009). Calculation of semiconductor band gaps with the M06-L density functional. The Journal of Chemical Physics, 130(7), 074103.

Zhu, C., Mu, X., van Aken, P. A., Maier, J., &Yu, Y. (2015). Fast Li Storage in MoS2‐Graphene‐Carbon Nanotube Nanocomposites: Advantageous Functional Integration of 0D, 1D, and 2D Nanostructures. Advanced Energy Materials, 5(4), 1401170.