Nörlund Matrix Domain on Sequence Spaces of p-adic Numbers

Author: Orhan Tuğ1
1Mathematics Education Department, Ishik University, Erbil, Iraq

Abstract:  In this paper, we introduce some new sequence spaces p-adic numbers l(p) (Nt), c(p)(Nt) and c0(p)(Nt) as Nörlund matrix domain in the sequence spaces l(p) , c(p) and c0(p), respectively. Moreover, α – , β – and γ – dual of these new spaces are calculated with some topological properties. We characterize some new matrix classes related with the spaces l(p) (Nt), c(p)(Nt) and c0(p)(Nt) and we conclude the paper with some significant results and an application.

Keywords: Nörlund Matrix, Sequence Spaces of p-adic Numbers, Matrix Transformations

Download the PDF Document from here.

doi: 10.23918/eajse.v3i3p33

Andree, R. V., & Petersen, G. M. (1956). Matrix methods of summation, regular for -adic
valuations. Proceedings of the American Mathematical Society, 7(2), 250-253.
Bachman, G. (1964). Introduction to p-adic Numbers and Valuation Theory. Academic Press. Inc.
Borwein, D., & Jakimovski, A. (1994). Matrix transformations of power series. Proceedings of the
American Mathematical Society, 122(2), 511-523.
Cho, I. (2014). p-adic Banach space operators and adelic Banach space operators. Opuscula
Mathematica, 34.
Gouvêa, F. Q. (1997). Elementary Analysis in p. In p-adic Numbers (pp. 87-132). Springer Berlin
Katok, S. (2007). p-adic Analysis Compared with Real (Vol. 37). American Mathematical Soc.
Mahler, K. (1973). Introduction to P-Adic Numbers and Their Function. CUP Archive.
Robert, A. M. (2000). A course in p-adic analysis, volume 198 of Graduate Texts in Mathematics.
Sally, P. J. (1998). An introduction to p-adic fields, harmonic analysis and the representation theory
of SL2. Letters in Mathematical Physics, 46(1), 1-47.
Tug, O., & Basar, F. (2016). On the domain of norlund mean in the spaces of null and convergent
sequences, TWMS J. Pure Appl. Math, 7(1), 76-87.
Tuǧ, O., & Başar, F. (2016). On the spaces of nörlund almost null and nörlund almost convergent
sequences. Filomat, 30(3), 773-783.
Wilansky, A. (2000). Summability through Functional Analysis (Vol. 85). Elsevier.