**Nörlund Matrix Domain on Sequence Spaces of p-adic Numbers**

**Author: **Orhan Tuğ^{1}

^{1}Mathematics Education Department, Ishik University, Erbil, Iraq

**Abstract: **In this paper, we introduce some new sequence spaces p-adic numbers l_{∞}^{(p) }(N^{t}), c^{(p)}(N^{t}) and c_{0}^{(p)}(N^{t}) as Nörlund matrix domain in the sequence spaces l_{∞}^{(p) }, c^{(p)} and c_{0}^{(p)}, respectively. Moreover, α – , β – and γ – dual of these new spaces are calculated with some topological properties. We characterize some new matrix classes related with the spaces l_{∞}^{(p) }(N^{t}), c^{(p)}(N^{t}) and c_{0}^{(p)}(N^{t}) and we conclude the paper with some significant results and an application.

**Keywords: **Nörlund Matrix, Sequence Spaces of p-adic Numbers, Matrix Transformations

Download the PDF Document **from here**.

**doi**: 10.23918/eajse.v3i3p33

**References**

Andree, R. V., & Petersen, G. M. (1956). Matrix methods of summation, regular for -adic

valuations. Proceedings of the American Mathematical Society, 7(2), 250-253.

Bachman, G. (1964). Introduction to p-adic Numbers and Valuation Theory. Academic Press. Inc.

Borwein, D., & Jakimovski, A. (1994). Matrix transformations of power series. Proceedings of the

American Mathematical Society, 122(2), 511-523.

Cho, I. (2014). p-adic Banach space operators and adelic Banach space operators. Opuscula

Mathematica, 34.

Gouvêa, F. Q. (1997). Elementary Analysis in p. In p-adic Numbers (pp. 87-132). Springer Berlin

Heidelberg.

Katok, S. (2007). p-adic Analysis Compared with Real (Vol. 37). American Mathematical Soc.

Mahler, K. (1973). Introduction to P-Adic Numbers and Their Function. CUP Archive.

Robert, A. M. (2000). A course in p-adic analysis, volume 198 of Graduate Texts in Mathematics.

Sally, P. J. (1998). An introduction to p-adic fields, harmonic analysis and the representation theory

of SL2. Letters in Mathematical Physics, 46(1), 1-47.

Tug, O., & Basar, F. (2016). On the domain of norlund mean in the spaces of null and convergent

sequences, TWMS J. Pure Appl. Math, 7(1), 76-87.

Tuǧ, O., & Başar, F. (2016). On the spaces of nörlund almost null and nörlund almost convergent

sequences. Filomat, 30(3), 773-783.

Wilansky, A. (2000). Summability through Functional Analysis (Vol. 85). Elsevier.