Lattice Thermal Conductivity of Wurtzite Bulk and Zinc Blende CdSe Nanowires and Nanoplayer

Authors :Ibrahim Nazem Qader1 & Botan Jawdat Abdullah2 & Hawbash Hamadamin Karim3
1Department of physics, College of Science, University of Raparin, Sulaimanyah, Iraq
2Department of physics, College of Science, University of Salahaddin, Arbil, Iraq
3Department of physics, Faculty of Science and Health, University of Koya, Arbil, Iraq

Abstract:   By using Morelli-Callaway model and some structure dependent parameters, theoretical calculations of LTC for wurtzite Bulk CdSe, zinc blende CdSe nanowire and nanolayer are performed. The theoretical and experimental correlation for CdSe NWs with diameter 41, 52 and 88nm and nanolayer with thickness of 4.3nm are investigated. While, the direction of growth of ZB CdSe is <110>, one equation for longitudinal and two different equation for transverse mode are used for calculating acoustic group velocity. Therefore, Morelli-Callaway model splits to three branches. There are six phonon transfer scattering rate, which are umklapp, normal, boundary impurity, dislocation, and phonon-electron scattering rate. In different temperatures, different phonon scattering process appeal. The shape of LTC as a function of temperature has a bell shape that all phonon scattering rate configured this shape. The peak of lattice thermal conductivity shift to higher temperature with decreasing the size of CdSe nanostructure. In summarize, the LTC for a particular temperature depends on the size and crystal structure. At 300K thermal conductivity of WZ bulk CdSe has less value than all ZB CdSe NWs mentioned in this work. Also quantum confinement effect cause mechanical and thermal parameters change with decreasing the size and dimension of CdSe semiconductor.

Keywords:  Lattice Thermal Conductivity, Cdse, Phonon Scatterings, Nanowire, Nanolayer


doi: 10.23918/eajse.v3i1sip9


Download the PDF Document from here.


References
Adachi, S. (2004). Handbook on physical properties of semiconductors (Vol. 2): Springer Science &
Business Media.
Asen-Palmer, M., Bartkowski, K., Gmelin, E., & Cardona, M. (1997). AP Zhernov, AV Inyushkin,
A. Taldenkov, and VI Ozhogin, KM Itoh and EE Haller. Phys. Rev. B, 56, 9431-9447.
Balandin, A., & Wang, K. L. (1998). Significant decrease of the lattice thermal conductivity due to
phonon confinement in a free-standing semiconductor quantum well. Physical Review B,
58(3), 1544.
Callaway, J. (1959). Model for lattice thermal conductivity at low temperatures. Physical Review,
113(4), 1046.
Caylor, J., Coonley, K., Stuart, J., Colpitts, T., & Venkatasubramanian, R. (2005). Enhanced
thermoelectric performance in PbTe-based superlattice structures from reduction of lattice
thermal conductivity. Applied physics letters, 87(2), 023105.
Dash, J. (1999). History of the search for continuous melting. Reviews of Modern Physics, 71(5),
1737.
Feser, J. P., Chan, E. M., Majumdar, A., Segalman, R. A., & Urban, J. J. (2013). Ultralow thermal
conductivity in polycrystalline CdSe thin films with controlled grain size. Nano letters,
13(5), 2122-2127.
Fon, W., Schwab, K., Worlock, J., & Roukes, M. (2002). Phonon scattering mechanisms in
suspended nanostructures from 4 to 40 K. Physical Review B, 66(4), 045302.
Grünwald, M., Rabani, E., & Dellago, C. (2006). Mechanisms of the wurtzite to rocksalt
transformation in CdSe nanocrystals. Physical review letters, 96(25), 255701.
Guthy, C., Nam, C.-Y., & Fischer, J. E. (2008). Unusually low thermal conductivity of gallium
nitride nanowires. Journal of Applied Physics, 103(6), 064319.
Hou, H., Yang, J., Hu, F., Zhang, S., & Yang, S. (2014). Structural, elastic and thermodynamic
properties of rock-salt structure CdSe at high temperature and high pressure,”. Chalcogenide
letters, 11(3), 121-128.
Huang, S.-P., Cheng, W.-D., Wu, D.-S., Hu, J.-M., Shen, J., Xie, Z., . . . Gong, Y.-J. (2007). Density
functional theoretical determinations of electronic and optical properties of nanowires and
bulks for CdS and CdSe. Applied physics letters, 90(3), 031904.
Jia-Jin, T., Yan, C., Wen-Jun, Z., & Qing-Quan, G. (2008). Elastic and thermodynamic properties of
CdSe from first-principles calculations. Communications in Theoretical Physics, 50(1), 220.
Khitun, A., Balandin, A., & Wang, K. (1999). Modification of the lattice thermal conductivity in
silicon quantum wires due to spatial confinement of acoustic phonons. Superlattices and
microstructures, 26(3), 181-193.
Klemens, P. (1955). The scattering of low-frequency lattice waves by static imperfections.
Proceedings of the Physical Society. Section A, 68(12), 1113.
Liang, L., & Li, B. (2006). Size-dependent thermal conductivity of nanoscale semiconducting
systems. Physical Review B, 73(15), 153303.
Madelung, O. (2004). II-VI compounds Semiconductors: Data Handbook (pp. 173-244): Springer.
Madelung, O. (2012). Semiconductors: data handbook: Springer Science & Business Media.
Mamand, S., & Omar, M. (2014). Effect of Parameters on Lattice Thermal Conductivity in

Germanium Nanowires. Paper presented at the Advanced Materials Research.
Mamand, S., Omar, M., & Muhammad, A. (2012). Nanoscale size dependence parameters on lattice
thermal conductivity of Wurtzite GaN nanowires. Materials Research Bulletin, 47(5), 1264-
1272.
Mamand, S., Omar, M., & Muhammed, A. (2012). Calculation of lattice thermal conductivity of
suspended GaAs nanobeams: Effect of size dependent parameters. Adv Mat Lett, 3(6), 449-
458.
Mamand, S. M. (2014). Phonon scatterings in the lattice thermal conductivity of alloy nanowires:
Theoretical study. American Journal of Nanoscience and Nanotechnology, 2(2), 21-27.
Mingo, N., & Broido, D. (2004). Lattice thermal conductivity crossovers in semiconductor
nanowires. Physical review letters, 93(24), 246106.
Morelli, D., Heremans, J., & Slack, G. (2002). Estimation of the isotope effect on the lattice thermal
conductivity of group IV and group III-V semiconductors. Physical Review B, 66(19),
195304.
Morelli, D. T., & Slack, G. A. (2006). High lattice thermal conductivity solids High thermal
conductivity materials (pp. 37-68): Springer.
Omar, M. (2007). Lattice thermal expansion for normal tetrahedral compound semiconductors.
Materials Research Bulletin, 42(2), 319-326.
Omar, M. (2012). Models for mean bonding length, melting point and lattice thermal expansion of
nanoparticle materials. Materials Research Bulletin, 47(11), 3518-3522.
Omar, M. (2016). Structural and Thermal Properties of Elementary and Binary Tetrahedral
Semiconductor Nanoparticles. International Journal of Thermophysics, 37(1), 1-11.
Omar, M., & Taha, H. (2009). Lattice dislocation in Si nanowires. Physica B: Condensed Matter,
404(23), 5203-5206.
Omar, M., & Taha, H. (2010). Effects of nanoscale size dependent parameters on lattice thermal
conductivity in Si nanowire. Sadhana, 35(2), 177-193.
Pernot, G., Stoffel, M., Savic, I., Pezzoli, F., Chen, P., Savelli, G., . . . Mönch, I. (2010). Precise
control of thermal conductivity at the nanoscale through individual phonon-scattering
barriers. Nature materials, 9(6), 491-495.
Post, E. (1953). On The Characteristic Temperatures of Single Crystals and the Dispersion of the
” Debye Heat Waves”. Canadian Journal of Physics, 31(1), 112-119.
Rouxel, O., Ludden, J., Carignan, J., Marin, L., & Fouquet, Y. (2002). Natural variations of Se
isotopic composition determined by hydride generation multiple collector inductively
coupled plasma mass spectrometry. Geochimica et Cosmochimica Acta, 66(18), 3191-3199.
Samvedi, V., & Tomar, V. (2009). The role of interface thermal boundary resistance in the overall
thermal conductivity of Si–Ge multilayered structures. Nanotechnology, 20(36), 365701.
Wombacher, F., Rehkämper, M., Mezger, K., & Münker, C. (2003). Stable isotope compositions of
cadmium in geological materials and meteorites determined by multiple-collector ICPMS.
Geochimica et Cosmochimica Acta, 67(23), 4639-4654.
Yang, J., Tang, H., Zhao, Y., Zhang, Y., Li, J., Ni, Z., . . . Xu, D. (2015). Thermal conductivity of
zinc blende and wurtzite CdSe nanostructures. Nanoscale, 7(38), 16071-16078.
Zou, J. (2010). Lattice thermal conductivity of freestanding gallium nitride nanowires. Journal of
Applied Physics, 108(3), 034324.
Zou, J., & Balandin, A. (2001). Phonon heat conduction in a semiconductor nanowire. Journal of
Applied Physics, 89(5), 2932-2938.
Zou, J., Kotchetkov, D., Balandin, A., Florescu, D., & Pollak, F. H. (2002). Thermal conductivity of
GaN films: Effects of impurities and dislocations. Journal of Applied Physics, 92(5), 2534-
2539.