Prediction of Shear Strength of Ultra High Performance Reinforced Concrete Deep Beams without Stirrups by Neural Network

Authors: Sinan Abdulkhaleq Yaseen1 & Omar Qarani Aziz2 & B.H. Abu Bakar3
1&2University of Salahaddin, College of Engineering, Civil Engineering Dept., Erbil, Iraq
3Universiti Sains Malaysia, School of Civil Engineering, Malaysia

Abstract:   Shear strength of ultra high performance reinforced concrete deep beams without stirrups predicted by neural network models. The neural network model based on 233 beams from literatures considering different parameters such as span to depth ratio, shear span to depth ratio, concrete compressive strength, amount of longitudinal reinforcement,…etc. Neural network can be used as an effective tool for predicting the shear capacity of normal & high strength concrete deep beams. Prediction shear strength by neural network very close to the experimental results with correlation coefficient of 0.836, while for ACIdesign eq., proposed eq. by Aziz & Zsutty where 0.394, 0.5624, and 0.488 respectively. The predicted shear strength model by neural network compared with ACI Code, Aziz and Zsutty equations, the results show that the Neural Network approach adequately captured the influence of concrete compressive strength on the shear capacity of reinforced concrete deep beams without shear reinforcement.

Keywords:  Deep Beam, Neural Network, Shear Strength, Ultra High Performance

doi: 10.23918/eajse.v3i1sip142

Download the PDF Document from here.

Achavy D. N. (1965). Significance of Dowel Forces on the Shear Failure of Rectanguler Reinforced
Concrete Beams. ACI Journal Proceeding, 62, 1265-1279.
ACI. (2013). CT-13, ACI Concrete Terminology. An ACI STANDARD An ACI STANDARD, .
ACI. (2014). 318M-14, Building Code Requirements for Structural Concrete and Commentary
Reported by ACI Committee 318.
Ahmed, S.H., Khaloo, A.R., & Poveda, A. (1986). Shear Capacity of Reinforced High-Strength
Concrete Beams. ACI Journal Proceeding, 83(2), 297-305.
Andrew, G., M., & Gregory, C. (1984). Shear Tests of High and Low Strength Concrete Beams
without Stirrups. ACI Journal Proceeding, 81(4), 350-357.
Ashour, A. F. (2000). Shear Capacity of Reinforced Concrete Deep Beams. Journal of Structural
Engineering, 126(9), 1045-1052.
Aziz, O.Q. (1997). Shear Strength Prediction of Crushed Stone Reinforced Concrete Deep Beams.
(Ph.D. Thesis), University of Technology, Baghdad, Iraq.
Aziz, O.Q. (1999). Shear Strength Behavior of High Strength Fibrous R.C. Deep Beams

(HSFRCDB) Without Stirrups. Mu’tah Journal,University of Mu’tah, Jordan, 14(1).
Aziz, O.Q., & Ghafur, H.A. (2012). Mechanical Properties of Ultra High Performance Concrete
(UHPC). Paper presented at the Twelfth International Conference on Recent Advances in
Concrete Technology and Sustainability Issues, Prague, Czech Republic.
Boris, B., & James, M. (1967). Review of Concrete Beams Failing in Shear. ASCE Journal, ST1,
Cheung, W. H. (1997). Neural Network Aided Aviation Fuel Consumption Modeling. (M. Sc.
Thesis), Blacksburg.
Clarck, A.P. (1951). Diagonal Tension in Reinforced Concrete Beams. ACI Journal, 48, 145-156.
De Paiva, H.A., & Chester, P. S. (1965). Strength and Behavior of Deep Beams in Shear. ASCE
Journal, 91(5), 19-41.
Elzanaty, A. H., Nilson, A.H.,& Slate, F.O. (1986). Shear Capacity of Reinforced Concrete Beams
Using High Strength Concrete. ACI Journal Proceeding, 83(2), 290-296.
Gaetano Russo, R., Margherita, P. (2005). Reinforced Concrete Deep Beams-Shear Strength Model
and Design Formula. ACI Structural Journal, 102(3), 429-437.
Kang-Hai, T., Fung-Kew, K., Susanto, T., & Lingwei, G. (1995). High Strength Concrete Deep
Beams With Effective Span and Shear Span Variations. ACI Structural Journal Proceedings,
92, 395-405.
Kani, G.N.J. (1967). How Safe are Our Large Reinforced Concrete Beams ? ACI Journal
Proceeding, 64(3), 128-141.
Kani, G.N.J. (1964). The Riddle of Shear Failure and its Solution. ACI Journal, 61, 441-467.
Kong, Y.L.K., & Rangan B.V. (1998). Shear strength of high-performance concrete beams. ACI
Structural Journal, 95, 677-688.
Kony, F., Robins P.J., & Cole, D.F . (1970). Web Reinforcement Effects on Deep Beams. ACI
Journal Proceeding, 67(12), 1010-1017.
Krefeld, W.J., & Thurston, C.W. (1966). Studies of The Shear and Diagonal Tension Strength of
Simply Supported Reinforced Concrete Beams. ACI Journal Proceeding, 63(4), 451-476.
Mansur, M.A., & Ong, K. C. G. (1991). Behavior of Reinforced Fiber Concrete Deep Beams in
Shear. ACI Structural Journal Proceedings, 88, 98-105.
Msheer, H.A. (2012). Shear Strength and Behavior of UHPC Deep Beams without Web
Reinforcement. (M.Sc. Thesis), Salahaddin University, Erbil, Iraq.
Narayanan, R., & DarwishY.S. (1988). Fiber Concrete Deep Beams in Shear. ACI Structure Journal
Proceedings, 85(2), 141-149.
Oresle, M. (1945). An Investigation of the Strength of Welded Stirrups in Reinforced Concrete
Beams. ACI Journal Proceeding, 42(11), 141-162.
Prackash, D. (1986). A Method for Determining the Shear Strength of Reinforced Concrete Beams
with Small a/d Magazine of Concrete Research, 26(86), 29-38.
Robert, F.M. (1971). Deep Beam Behaviour Affected by Length and Shear Span Variation. ACI
Journal Proceeding, 68(12), 954-958.
Salim,T.Y., & Majid, A. (2010). Modeling of Ultimate Load for R.C. Beams Strengthened with
Carbon FRP using Artificial Neural Networks. Al-Rafidain Engineering Journal, 18(6), 28-
Santha, K. A. R. (1972). Strength and Behavior of Single-Span, Deep Reinforced Concrete Beams.
Indian Concrete Journal, 46(11), 459-465.
Sarsam, K. F., & Abdulla, A. M. (1989). Shear Strength of High Strength Concrete Beams. AlMuhandis Magazine, 2, 15-24.
Sarsam, K.F., & Janan, M. S. (1992). Shear Design of High-and-Normal Strength Concrete Beams
with Web Reinforcement. ACI Structural Journal, Proceeding, 89(6), 658-664.
Siao, W. B. (1995). Deep Beams Revisited. ACI Structural Journal Proceedings, 92(1), 95-102.
Smith, K. N., & Vantsiatis A.S. (1982). Shear Strength of Deep Beams. ACI Journal Proceeding,
79(3), 201-213.
Stephen, J.F., & Gilbert, R. I. (1998). Experimental Studies on High-Strength Concrete Deep
Beams. ACI Structural Journal, 95(4), 382-390.

Sudheer, R.L., Ramana Rao. N.V., & Gunneswara Rao T.D. (2010). Shear Resistance of High
Strength Concrete Beams without Shear Reinforcement. International Journal of Civil and
Structural Engineering, 1(1), 101-113.
Swamy, R. N.& Bahia, H. M. (1985). The Effectiveness of Steel Fibers as Shear Reinforcement.
Magazine of Concrete International, 35-40.
Taylor, R. (1960). Some Shear Tests on Reinforced Concrete Beams Without Shear Reinforcement.
Magazine of Concrete Research, 12(36), 145-154.
WEKA. Waikato Environment for Knowledge Analysis (Weka) (Version 3.9). New Zealand.:
developed at the University of Waikato.
Wu, X., & Han, M. (2009). First Diagonal Cracking and Ultimate Shear of I-Shaped Reinforced
Girders of Ultra High Performance Fiber Reinforced Concrete without Stirrup. International
Journal of Concrete Structures and Materials, 3(1), 47-56.
Yagendra, P. (1976). Serviceability Considerations for Reinforced Concrete Deep Beams. Journal of
Structural Engineering, 4(1), 33-38.
Yaseen, S.A. (2016). An Experimental Study on the Shear Strength of High-performance Reinforced
Concrete Deep Beams without Stirrups. Eng.&Tech.Journal, 34(10).
Ziad, K.B. (1994). The Effect of Shear Span to Depth Ratio on the Shear Strength of High Strength
Concrete Beams. (M.Sc. Thesis), University of Technology, Baghdad, Iraq.
Zsutty, T. C. (1968). Beam Shear Strength Prediction by Analysis of Existing Data. ACI Journal
Proceeding, 65(11), 943-951.