Biosynthesis of Gold Nanoparticles with Four Different Lactobacillus Species
DOI:
https://doi.org/10.23918/eajse.v9i3p05Keywords:
Gold nanoparticles (AuNPs), Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus casei, Lactobacillus paracaseiAbstract
Exopolysaccharide production by many lactic acid bacteria of diverse genera and species has been widely explored. In this study, the biosynthesis of gold nanoparticles using cell-free culture supernatant of bacterial species was explored. A total of 500 saliva samples were obtained from the oral cavity, then the samples were cultured and examined. The 500 saliva samples contained 19 oral bacteria, which included Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus casei, and Lactobacillus paracasei, that extracellularly produced gold nanoparticles when exposed to chloroauric acid (HAuCl4). Biosynthesis of gold nanoparticles made by reducing HAuCl4 using the cell-free culture supernatant of the four different species of Lactobacillus. Characterizations of the gold nanoparticles were identified by Ultraviolet-Visible Spectroscopy, Fourier Transform Infrared Spectroscopy, Particle Size Analyzer (Dynamic Light Scattering), Zeta Potential, X-Ray Powder Diffraction, Transmission Electron Microscopy, Energy Dispersive X-Ray Analysis, and Atomic Force Microscopy. Given that Lactobacillus species are engaged in the formation of gold nanoparticles, this method may be more useful than chemical and physical methods, as it is cost-effective and eco-friendly.
References
[1] Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews. 2012; 41(7): 2740-79. https://doi.org/10.1039/C1CS15237H.
[2] Iravani S. Green synthesis of metal nanoparticles using plants. Green Chemistry. 2011; 13(10): 2638-50. https://doi.org/10.1039/C1GC15386B.
[3] Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnology letters. 2016 Apr; 38: 545-60. https://doi.org/10.1007/s10529-015-2026-7.
[4] Ahmed S, Ikram S. Biosynthesis of gold nanoparticles: a green approach. Journal of Photochemistry and Photobiology B: Biology. 2016 Aug 1; 161: 141-53. https://doi.org/10.1016/j.jphotobiol.2016.04.034.
[5] Titus D, Samuel EJ, Roopan SM. Nanoparticle characterization techniques. InGreen synthesis, characterization and applications of nanoparticles 2019 Jan 1 (pp. 303-319). Elsevier. https://doi.org/10.1016/B978-0-08-102579-6.00012-5.
[6] Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chemical reviews. 2012 May 9; 112(5): 2739-79. https://doi.org/10.1021/cr2001178.
[7] Bhattacharya D, Gupta RK. Nanotechnology and potential of microorganisms. Critical reviews in biotechnology. 2005 Jan 1; 25(4): 199-204. https://doi.org/10.1080/07388550500361994.
[8] Dwivedi AD, Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2010 Oct 20; 369(1-3): 27-33. https://doi.org/10.1016/j.colsurfa.2010.07.020.
[9] Ashajyothi, Chandrakanth RK. Biological Synthesis and Characterization of Gold Nanoparticles from Enterococcus faecalis. Journal of bionanoscience 2014 Aug 01; 8(4): 255-259. https://doi.org/10.1166/jbns.2014.1232.
[10] Rajeshkumar S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. Journal of Genetic Engineering and Biotechnology 2016 Jun; 14(1): 195-202. https://doi.org/10.1016/j.jgeb.2016.05.007.
[11] Thakker JN, Dalwadi P, Dhandhukia PC. Biosynthesis of Gold Nanoparticles Using Fusarium oxysporum f. sp. cubense JT1, a Plant Pathogenic Fungus. ISRN Biotechnology 2013; 2013: 515091-5. http://dx.doi.org/10.5402/2013/515091.
[12] Sosa IO, Noguez C, Barrera RG. Optical Properties of Metal Nanoparticles with Arbitrary Shapes. The journal of physical chemistry. B 2003 Jul 03,; 107(26): 6269-6275. https://doi.org/10.1021/jp0274076.
[13] Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter. 2017 Apr 20; 29(20): 203002. https://doi.org/10.1088/1361-648x/aa60f3.
[14] Ngo VKT, Nguyen HPU, Huynh TP, Tran NNP, Lam QV, Huynh TD. Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157:H7. Adv Nat Sci: Nanosci Nanotechnol 2015 -07-02; 6(3). http://dx.doi.org/10.1088/2043-6262/6/3/035015.
[15] Meva FE, Segnou ML, Ebongue CO, Ntoumba AA, Kedi PB, Deli V, Etoh MA, Mpondo EM. Spectroscopic synthetic optimizations monitoring of silver nanoparticles formation from Megaphrynium macrostachyum leaf extract. Revista Brasileira de Farmacognosia. 2016 Oct; 26: 640-6. https://doi.org/10.1016/j.bjp.2016.06.002.
[16] Niu J, Shin YJ, Son J, Lee Y, Ahn JH, Yang H. Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles. Optics express. 2012 Aug 27; 20(18): 19690-6. https://doi.org/10.1364/OE.20.019690.
[17] Ren Y, Qi H, Chen Q, Wang S, Ruan L. Localized surface plasmon resonance of nanotriangle dimers at different relative positions. Journal of Quantitative Spectroscopy and Radiative Transfer. 2017 Sep 1; 199: 45-51. https://doi.org/10.1016/j.jqsrt.2017.05.003.
[18] Singh RP, Shukla MK, Mishra A, Kumari P, Reddy CR, Jha B. Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydrate polymers. 2011 Mar 17; 84(3): 1019-26. https://doi.org/10.1016/j.carbpol.2010.12.061.
[19] Frost RL, Palmer SJ, Grand LM. Synthesis and Raman spectroscopy of indium‐based hydrotalcites of formula Mg6In2 (CO3)(OH) 16· 4H2O. Journal of Raman Spectroscopy. 2010 Dec; 41(12): 1797-802. https://doi.org/10.1002/jrs.2571.
[20] Adebayo-Tayo B, Salaam A, Ajibade A. Green synthesis of silver nanoparticle using Oscillatoria sp. extract, its antibacterial, antibiofilm potential and cytotoxicity activity. Heliyon. 2019 Oct 1; 5(10). https://doi.org/10.1016/j.heliyon.2019.e02502.
[21] Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018 May 18,; 10(2): 57. https://doi.org/10.3390/pharmaceutics10020057.
[22] Mudalige T, Qu H, Van Haute D, Ansar SM, Paredes A, Ingle T. Characterization of nanomaterials: Tools and challenges. Nanomaterials for food applications. 2019 Jan 1: 313-53. https://doi.org/10.1016/B978-0-12-814130-4.00011-7.
[23] Gaikwad, V.L., Choudhari, P.B., Bhatia, N.M. and Bhatia, M.S., 2019. Characterization of pharmaceutical nanocarriers: in vitro and in vivo studies. In Nanomaterials for drug delivery and therapy (pp. 33-58). William Andrew Publishing. https://doi.org/10.1016/B978-0-12-816505-8.00016-3.
[24] Pate K, Safier P. 12 - Chemical metrology methods for CMP quality. Advances in Chemical Mechanical Planarization (CMP): Elsevier Ltd; 2016. p. 299-325. https://doi.org/10.1016/B978-0-12-821791-7.00017-4.
[25] Joni, I., Zannuary, I., Hidayat, D. and Panatarani, C., 2016, February. A simple microcontroller-based sedimentation potential measurement for nanosuspension stability investigations. In AIP Conference Proceedings (Vol. 1712, No. 1). AIP Publishing. https://doi.org/10.1063/1.4941873.
[26] Rashid TM, Nayef UM, Jabir MS. Nano-ZnO decorated on gold nanoparticles as a core-shell via pulse laser ablation in liquid. Optik (Stuttgart) 2021 Dec; 248: 168164. https://doi.org/10.1016/j.ijleo.2021.168164.
[27] Gannimani R, Ramesh M, Mtambo S, Pillay K, Soliman ME, Govender P. γ-Cyclodextrin capped silver nanoparticles for molecular recognition and enhancement of antibacterial activity of chloramphenicol. Journal of inorganic biochemistry 2016 Apr; 157: 15-24. https://doi.org/10.1016/j.jinorgbio.2016.01.008.
[28] Bélteky P, Rónavári A, Zakupszky D, Boka E, Igaz N, Szerencsés B, et al. Are Smaller Nanoparticles Always Better? Understanding the Biological Effect of Size-Dependent Silver Nanoparticle Aggregation Under Biorelevant Conditions. IJN 2021 -04; Volume16: 3021. https://doi.org/10.2147/IJN.S304138.
[29] Berg JM, Romoser A, Banerjee N, Zebda R, Sayes CM. The relationship between pH and zeta potential of∼ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology. 2009 Dec 1; 3(4): 276-83. https://doi.org/10.3109/17435390903276941.
[30] Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. International journal of nanomedicine. 2012 Jun 6: 2767-81. https://doi.org/10.2147/IJN.S24805.
Downloads
Published
Issue
Section
License
LicenseEurasian J. Sci. Eng is distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY-4.0) https://creativecommons.org/licenses/by/4.0/