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1. Introduction

Fredholm integro-differential equations (FIDEs) arise in diverse scientific fields, including physics,
biology, engineering, and economics, where phenomena involve both differential operators and
memory effects described by integral terms. These equations typically take the form:

b
(D u'(x)+pulx) =fx)+ Af k(x,tu(t) dt,

with Dirichlet boundary conditions:

(2) u(@=a, ul)=p

Solving FIDEs analytically is often infeasible for complex kernels k(x,t) or inhomogeneous terms
f(x), necessitating robust numerical methods. While finite differences and quadrature rules are
established tools for differential and integral operators separately, their synergistic integration remains
critical for balancing accuracy, stability, and computational efficiency.

Existing approaches frequently employ low-order schemes (e.g., 2nd-order finite differences with
Trapezoidal quadrature), limiting convergence rates and requiring fine discretization for acceptable
accuracy. Recent advances focus on high-order approximations to improve efficiency. For instance,
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6th-order finite difference schemes (e.g., 7-point stencils) offer superior derivative approximations,
while composite Newton-Cotes quadrature’s (e.g., Boole’s rule) provide high-precision integral
evaluations. However, a unified framework combining these high-order techniques for FIDEs—
particularly addressing boundary effects and implementation efficiency has been underexplored.

Recent advances in numerical methods for FIDEs have focused on achieving higher orders of accuracy
and computational efficiency. Homotopy perturbation and Variational iteration methods [1] Spectral
methods, Legendre polynomial [2, 3] and Cubic B-spline finite element method [4] Haar wavelet-
based approaches [5, 6] have been proposed for their excellent convergence properties. High-order
compact finite difference schemes have been applied to FIDEs to improve accuracy, and for the
Volterra integro-differential equation have used a compact finite difference method with the Haar
wavelet method [7] has been used. Additionally, machine learning techniques with conventional
methods like the trapezoidal rule [8] and Implicit-Explicit Rung-Kutta methods [9] have emerged as
competitive alternatives. Furthermore, parallel computing implementations [10] have addressed a 9-
point sixth-order accurate compact finite difference method. However, the combination of a 7-point
finite difference scheme with composite quadrature rules (including Boole's rule) for Fredholm
integro-differential equations, with a focus on boundary treatment and computational efficiency, has
not been fully explored. This paper aims to fill this gap.

In this work, we introduce a novel numerical scheme that integrates 7-point finite differences for the
differential component with composite quadrature rules (Boole’s, Simpson’s 3/8, and Trapezoidal) for
the integral term.

The paper is structured as follows: Section 2 derives the unified discretization framework, Section 3
validates the method through numerical examples, and Section 4 discusses computational
performance. Concluding remarks highlight applications and extensions.

2. Derivation of the Method [11, 12, 13]
To construct a numerical solution, we consider a partition Ay:a =x) < xy < <xp_1 <X, =Db
on a given interval [a, b], where h = x;,q — x; represents the mesh size of the partition, and let h =

b_Ta is the overall mesh size. We use a 7-point Finite difference on the differential parts combined with

a quadrature rule and composite Boole's rule on the integral part of (1). Now using the quadrature rule
and the composite Boole's rule with N subintervals and x € [a, b], The integral part of (1) is
approximated by the Composite Simpson's 3/8, Trapezoidal rule, and Composite Boole’s rule,

respectively.
N
b 3 N-1 371
(3) f Kl-,juj dx = gl (Ki,ouo + Ki,NuN) +3 z Ki,]-uj +2 z Ki,3ju3j |
a j=1 j=1
n N-1
(4) f Ki,ju]' dx = E (Ki,OuO + Ki,NuN) + 2 z Ki,ju]'
a j=1

N N

b 2h = -
(5) fa K;jujdx = = <7(Ki,0u0 + Ki,NuN) + 32 Z;=1Ki,2j—1u2j—1 +12 Z};l Kisj_ousj_o +

N1
4%, Ki,4ju4j>
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Where k(x;,t;) = k; j and u(x;) = u; . using forward, central, and backward differences we can
approximate the derivative part of (1) as
Forward finite difference, i = 1,2,

' 812U;—3132141+5265145—5080143+2970U; 4 4—972U; s +137Uj1g
(6) u'(x) = 50N

Central finite difference i = 3:n — 3

Zui_3 - 27ui_2 + 270ui_1 - 4'90111 + 270ui+1 - 27ui+2 + 2ui+3

@ W) = 180h2

+ 0(h®)

Backward finite differencei =n—2,n—1

812ui — 3132ui_1 + 5265ui_2 — 5080ui_3 + 2970ui_4 — 972ui_5 + 137ui_6
180h?

2.1 7-Point Finite Difference Method with Composite Simpsons 3/8 Rule (FDCS)

8) u"(x)=

by replacing u''(x) in (1) with Composite Simpsons 3/8 rule (3) and (6-8), we have fori = 1,2
(812 + 180q;h?)u; — 3132u;41 + 5265 u; 45 — 5080 u; 3 + 2970 Ujyq — 972uUj4s + 137U;46

N
270h3 31

135h3 1
Zj: kl] j + 2 j=1 ki,3ju3j >

405h3

= 180h2ﬁ (k Ouo + k NuN) + —

i=3n-3
Zui_3 - 27ui_2 + 270ui_1 + (—490 + 180qih2)ui + 270ui+1 - 27ui+2 + 2ui+3
135h3

405h3 270h3

= 180h%f; +

(klOuO + klNuN) +— Zj: lkl] U +—— ki,3ju3]'

] 1
=i=n-2n-1
(812 + 180qih2)ui — 3132ui_1 + 5265ui_2 - 5080ui_3 + 2970ui_4 — 972ui_5 + 137ui_6

N
270h3 51

135h3 1 3
2j= kl] i +T j=1 ki,3ju3j~

— 180h2f; + 405h3

—— (kiouo + kinuy) + ——
2.2 7-point Finite Difference Method with Composite Trapezoidal Rule (FDCT)

by replacing u''(x) in (1) with Composite Trapezoidal rule (4) and (6-8), we have fori = 1,2
(812 + 180q;h?)w; — 31324 + 5265u;45 — 5080U;45 + 2970Uj1s — 972U s + 13704
= 180h?f; + 90h3(k;uo + kyyuy) + 18003 T k; juj,

i=3n-3

2uj_3 — 27uj_5 + 270u;_; + (—490 + 180q;h?)u; + 270u;q — 27Uj4p + 2Uj43

= 180h?f; + 90h3(K; oUp + K; nUy) + 18003 X1k, ju,

=i=n-2n-1

(812 + 180q;h*)u; + —3132u;_; + 5265u;_, — 5080u;_5 + 2970u;_4 + —972u;_g +

137u;_¢ = 180h%f; + 903 (k;ouo + kiyuy) + 180h3 XN k; ju;.
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2.3 7-point Finite Difference Method with Composite Boole’s Rule (FDCB)
and by replacing u"’ (x) in (1) with Composite Boole’s rule (4) and (6-8), we have fori = 1,2
(812 + 180q;h*)u; + —3132u;,4 + 5265u;,, — 5080u;,3 + 2970u;,4 — 972U, 5

+137u;16 = 180h2f; + 56h% (kyouo + kynun) + 25603 X075 kipj_qUzj_q +

N N

X —1
96h3 2;21 ki_4j_2u4j_2 + 112h3 Z;:1 ki,4ju4j,
i=3n-3

Zui_3 - 27ui_2 + 27Oui_1 + (—4'90 + 180qlh2)ul + 270ui+1 - 27ui+2 + 2ui+3
N
= 180h%f; + 563 (ks oo + ki) + 256h° T/ T ki pj_qtizj_y + 96h% Ni_ kiajUaja +
N
21
112h3 Z;zl ki,4ju4j7
=>i=n-2,n-1

(812 + 180g;h?)u; — 3132u;_; + 5265u;_, — 5080u;_3 + 2970u;_, — 972u;_s
+137u;_g = 180h%f; + 56h3(K;oUp + KinUn) + 25603 X1 2 Ky i 1 Uyj_q +
N
-1

N
96h® 3t Kiaj2Usjz + 1120° F1_ | K;4Us.

3. Convergence Analysis

This section aims to prove the convergence analysis of the 7-Point Finite Difference Method. We first
introduce the following lemma that plays a crucial role in the proof. We define the space L,(a, b)
represents a Hilbert space with the inner product:

b
(u(x),v(x)) = fu(x).v(x) dx.

The Sobolev H! and H? admit a natural norm

lulla = llll® + 1% Ivlige = vl + [1v']1?

TSM

Lemma 3.1: The remainder of the composite Boole’s rule satisfies

-8
| TSMl < %h‘}lﬁ(f).

Proof: Let the function w; = K(x;, z)u(z) be continuous and possesses a continuous derivative in
[0, Z, ]. Expanding y about z = z, we obtain

’ 1 2., 11 1 3., 111 1 3., (i)
wy(x) = wyy + (2 — z9)wy, +§(Z —Zp) Wy + 5(2 —7p)°wyy + a(z —Zg) wy,  +
S2 2
I (rh)z " (Th)3 " (T'h)4 (iv)
K(xi, 2)u(z)dz = | h| wy, +rhwy, +TW0 +TW10 + o Vo + - |dr
So 0
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r2h rn? . (h)* (rh)
= h[rwy, + —— 3 wy, + c pwi, + 7 pwi, + 5 70" (w)+ 13
2., 1 4h2 " 2h4 7z 4h (iv)
(9) - 2hW10 + 2h W10 3 W10 + — 3 W10 +EW1 + .-
Therefore,
(10) Wi, =Wy,
2 3 h4 (iv)
(11) W11 :W10+hW16+7W1g+?W16"+24W10 + .-
3
(12) Wiy = Wig + 2hwy )+ 2h2wy ) + g 2y @)
Combining 9-12 becomes
h h l 2 3 127 5h4 (iv)
§[W10+4‘W11+W12] =§ 6W10+6hW10+4‘h W10 +2h WlO 6 WlO +
— 2., 1 4h3 o, 2h* " 5h* (iv)
(13) —ZhW10+2h W10+TW10 +TW10 +1_8W10 +...
Using 9 and (13), these leads
S2 d h 4 _ 4 h5 6
fso wyds _g[Wlo +4wy, + W12] = 2725V W1g

The composite Boole’s rule is a numerical integration method used to approximate the definite integral
of a function over an interval by dividing the interval into multiple sub-intervals and applying Boole’s
rule on each sub-interval. To use this method, the interval of integration [0, 1] is subdivided into N even
subdivisions as follows: 0 = z, < z; < z, < +- < zy = l. The integral over the entire interval [0, []
can be approximated by summing up the individual integrals over each sub-interval using the
composite Boole’s rule. The formula for the composite Boole’s rule for a sub-interval [z;,z;,4] is

given by:
: : : (-
n
fSO WldS—— 7W10+3221 1 Wigj_ 1+1ZZ] W Wigjp, t 14X wiy, + 7wy | =
4 25, (6
725 Wio

We obtain the errors in the intervals [0, [] as

8 rrw® (), &€ [0,1].

gsm_ % (W@ Wy ® by O] =

472.5

Assumption 1: The kernel functions k(x, z) satisfies the following positive definite property:
b b
(14) f f(k(x, z)D(x), CD(Z))dx dz > 0.
aa
for every continuous ®(x) = (Cbl (%), Py(x), ... Dy (x)) # 0, and the integral

b b
fflk(x,z)lzdx dz < oo,
a a
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Theorem 3.2 (Error estimates): Assuming that assumption 1 is satisfied and the kernel functions
k(x, z) is smooth enough, then

(15) lu(x) — 6, ()|l;» < Ch*
where C > 0.

Proof: Setting e, = u — 0, (x) in (1), gives

b
(16) #+p%—hf%m@mmh=ﬂ@+7@ﬁ)

where T'(x, h) be a vector denoting the truncation error such that

b
T(x,h) = —0) — poy, + A f (k(x,7) 8,(2)) dz

Then, we have

T(x;,h) = —Lpw; + Af;(k(xi,z) w(w, Z)) dz — 0}, — pby, + Lpw; — )Lf;(k(x, z2)(w(w, z) —
0,(x))) dz = O(h*).

Multiplying Eq. (16) by e;, and integrating with respect to x, gives

[l Ceilyenddx + [ plen enddx =1 J [ (ke 2) en en))dz dx = [ (F (), e ) dx +
ff(T(X, h), ey ) dx.

Since p — 1q" = 0 and integrating by parts along with Assumption 1, we have
p—34q g gbyp g p

b b b
f(e;l,e;l)dx < f(f(x), ey ) dx + f(T(x, h), ey ) dx.

Applying Cauchy’s inequality and Lemma 3.1, this becomes

llenllZ < IIF QOllenllst 1T (x, Wl len s,
By taking small values of h* > h®, the proof will be finished.
4. Results and Discussion

The section illustrates the performance of the presented method through an implementation based on
MATLAB programming. The error norms of [? and [® are used to measure the error between the
numerical and analytical solutions. We will verify that the presented method can be applied with a
large number of N. The presented methods are convergence because when N is increasing in the error
in solutions is also decreasing. We denote by E errors terms given by:

E(x) =u(x) - UAppro.(x)
Let us introduce the three accuracy indicators when using the space step size h, as follows:

e The Absolute (pointwise) error is:

€(x) = [E(x)]
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(B, h) = max|EG)l, 2B R) = [hEM G2

The [®-norm and [?-norm of the error as:

The order of convergence R is calculated as:

Rate

Example 1: Consider the FIDE:

with Dirichlet boundary conditions: u(0) =1, u(1) =3,

and the exact solution is u(x) = x + 1.

_ log(Error(N1)/Error(N2))

log(N2/N1)

2
u’'(x)+ u(x) =x+1—2e¥—4e* 2 + f e* tu(t) dt,
0

Table 1: Numerical results for Example 1 by using FDCB, FDCS, and FDCT with N = 12 and 0 <

x < 2.
U gppro. (%) U gppro.(X) U gppro. (%)
X u(x)
FDCB FDCS FDCT
0.1667 1.1667¢+00 1.1667¢+00 1.1667e+00 1.1668e+00
0.3333 1.3333e+00 1.3333e+00 1.3333e+00 1.3337e+00
0.5000 1.5000e+00 1.5000e+00 1.5000e+00 1.5005e+00
0.6667 1.6667e+00 1.6667e+00 1.6667¢+00 1.6672e+00
0.8333 1.8333e+00 1.8333e+00 1.8333e+00 1.8340e+00
1.0000 2.0000e+00 2.0000e+00 2.0000e+00 2.0007e+00
1.1667 2.1667¢+00 2.1667e¢+00 2.1667¢+00 2.1674e¢+00
1.3333 2.3333e+00 2.3333e+00 2.3333e+00 2.3340e+00
1.5000 2.5000e+00 2.5000e+00 2.5000e+00 2.5006e+00
1.6667 2.6667¢+00 2.6667¢+00 2.6667¢+00 2.6671e+00
1.8333 2.8333e+00 2.8333e+00 2.8333e+00 2.8336e+00
I2(E, h) 1.8739e-07 2.1560e-05 7.0978e-04
I*(E, h) 1.8288e-07 2.1041e-05 6.9271e-04
CPU-time 1.026330 1.403556 1.808207
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Table 2: Rate Convergence of FDCB, FDCS, and FDCT for [?(E, h) in Example 1.
N | FDCB-I*(E,h) Rate FDCS—I?(E,h) @ Rate FDCT—-I?(E,h) @ Rate
12 1.8739e-07 2.1560e-05 7.0978¢-04
24 7.3999¢-09 4.6624 1.3600e-06 3.9867 1.7729¢-04 2.0013
48 4.6834e-11 7.3038 8.5195¢-08 3.9967 4.4312e-05 2.0003
96 5.3381e-13 6.4551 5.3273e-09 3.9993 1.1077e-05 2.0001
Table 3: Rate Convergence of FDCB, FDCS, and FDCT for [*(E, h) in Example 1.
N | FDCB-I®(E,h) | Rate | FDCS—I®(E,h) Rate | FDCT—I®(E,h) | Rate
12 1.8288e-07 2.1041e-05 6.9271e-04
24 2.9165e-09 5.9705 1.3334e-06 3.9800 1.7383e-04 1.9946
48 4.5856¢-11 5.9910 8.3531e-08 3.9967 4.3447e-05 2.0003
96 8.6686¢e-13 5.7252 5.2248e-09 3.9989 1.0864e-05 1.9997
Example 2: Consider the FIDE:
2m
u'"(x) + 6 u(x) = 5sinx + 6m? cosx + %f cosx t? u(t) dt,
0
with Dirichlet boundary conditions: u(0) = 1, u(2m) = 0,
and the exact solution is u(x) = sinx.
Table 4: Rate Convergence of FDCB, FDCS, and FDCT for [2(E, h) in Example 2.
N  FDCB-I*(E,h) Rate FDCS—I?(E,h) Rate FDCT-I?(E,h) Rate
12 6.4346e-02 7.2330e-02 2.7093e+01
24 6.4087e-04 6.6497 6.4183e-04 6.8163 3.6328e-02 9.5426
48 1.2291e-05 5.7044 1.9853e-05 5.0148 | 6.7694¢-03 2.4240
96 1.1399¢-07 6.7526 1.0740e-06 4.2083 1.6792¢-03 2.0113
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Table 5: Numerical results for Example 2 by using FDCB, FDCS, and FDCT with N = 12 and 0 <

x < 2T
Uppro. x) Uppro. x) Usppro. (x)
X; u(x)
FDCB FDCS FDCT

0.5236 5.0000e-01 5.4364e-01 5.4844e-01 5.0000e-01
1.0472 8.6603e-01 8.7175e-01 8.7449¢-01 8.6603e-01
1.5708 1.0000e+00 9.8947¢-01 9.8938e-01 1.0000e+00
2.0944 8.6603e-01 8.5574e-01 8.5302e-01 8.6603e-01
2.6180 5.0000e-01 4.8396¢-01 4.7944¢-01 5.0000e-01
3.1416 1.2246¢-16 -3.4861e-02 -4.0008¢-02 1.2246e-16
3.6652 -5.0000e-01 -5.4524e-01 -5.4977e-01 -5.0000e-01
4.1888 -8.6603e-01 -8.9267¢-01 -8.9540e-01 -8.6603e-01
4.7124 -1.0000e+00 -9.9056e-01 -9.9064e-01 -1.0000e+00
5.2360 -8.6603e-01 -8.3473e-01 -8.3199¢-01 -8.6603e-01
5.7596 -5.0000e-01 -4.7865¢e-01 -4.7386e-01 -5.0000e-01
I%(E,h) 6.4346¢-02 7.2330e-02 2.7093e+01
I”(E,h) 4.5245e-02 4.9769¢-02 1.6100e+01

CPU-time 1.390582 2.399016 1.731279

Table 6: Rate Convergence of FDCB, FDCS, and FDCT for [ (E, h) in Example 2.

N | FDCB-I"(E,h) | Rate  FDCS—I*(E,h) Rate | FDCT-I”(E,h) Rate
12 4.5245e-02 4.9769e-02 1.6100e+01

24 4.3169¢-04 6.7116 4.3341e-04 6.8434 3.3738e-02 8.8985
48 7.1335e-06 5.9192 1.2882e-05 5.0723 6.7694¢-03 2.3173
96 6.6993e-08 6.7345 7.1893e-07 4.1634 1.6792e-03 2.0113

Example 3: Consider the FIDE:

with Dirichlet boundary conditions: u(0) = 1, u(1) = e?,

and the exact solution is u(x) = e*.

u(x) + 8u(x) =9e* —x* + f x* tu(t)dt,

1
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Table 7: Numerical results for Example 3 by using FDCB, FDCS, and FDCT with N = 12 and 0 <

x <1
U gppro.(X) U gppro.(X) U gppro. (%)
X u(x)
FDCB FDCS FDCT
0.0833 1.0000e+00 1.0869¢+00 1.0869¢+00 1.0000e+00
0.1667 1.0869¢+00 1.1814e+00 1.1814e+00 1.0868e+00
0.2500 1.1814e+00 1.2840e+00 1.2840e+00 1.1813e+00
0.3333 1.2840e+00 1.3956e+00 1.3956e+00 1.2839e+00
0.4167 1.3956e+00 1.5169¢+00 1.5169¢+00 1.3954e+00
0.5000 1.5169¢+00 1.6487¢+00 1.6487¢+00 1.5167¢+00
0.5833 1.6487¢+00 1.7920e+00 1.7920e+00 1.6485e+00
0.6667 1.7920e+00 1.9477e+00 1.9477e+00 1.7918e+00
0.7500 1.9477e+00 2.1170e+00 2.1170e+00 1.9475e+00
0.8333 2.1170e+00 2.3010e+00 2.3010e+00 2.1168e+00
0.9167 2.3010e+00 2.5009¢+00 2.5009¢+00 2.3008e+00
I? (E,h) 4.7879¢-07 3.6324e-07 1.6634e-04
I®(E, h) 7.6221e-07 6.1779¢-07 2.2994¢-04
CPU-time 1.718053 2.081650 1.849899

Table 8: Rate Convergence of FDCB, FDCS, and FDCT for [2(E, h) in Example 3.

N | FDCB-I*(E,h) Rate | FDCS—I*(E,h) Rate | FDCT-I*(E,h) Rate
12 4.7879¢-07 3.6324e-07 1.6634¢-04

24 7.3999¢-09 6.0157 1.2683¢-08 4.8400 4.1613¢-05 1.9990
48 7.3900e-11 6.6458 1.1308¢-09 3.4875 1.0405¢-05 1.9998
96 2.0648¢-12 5.1615 7.5390e-11 3.9068 2.6012¢-06 2.0000
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Table 9: Rate Convergence of FDCB, FDCS, and FDCT for [*(E, h) in Example 3.

N | FDCB—I®(E,h) | Rate | FDCS—I®(E,h) Rate FDCT—I*(E,h) Rate

12 7.6221e-07 6.1779¢-07 2.2994e-04

24 1.0221e-08 6.2206 1.7626e-08 5.1313 5.7960e-05 1.9881

48 1.0088e-10 6.6628 1.5760e-09 3.4834 1.4492¢-05 1.9998

96 2.9916e-12 5.0756 1.0506e-10 3.9070 3.6230e-06 2
Example 4: Consider the FIDE:

T
u”(x) + 2u(x) = cosx + 2x — <—2 + %) sinx + f sinx t u(t) dt,

0

with Dirichlet boundary conditions: u(0) =1, u(m) =1+,

and the exact solution is u(x) = cosx + x.

Table 10: Numerical results for Example 4 by using FDCB, FDCS, and FDCT with N = 12 and 0 <

x < T.
UAppro. (x) UAppro. (x) UAppro. (x)
Xi ll(X)
FDCB FDCS FDCT
0.2618 1.2277e+00 1.2261e+00 1.2261e+00 1.2232e+00
0.5236 1.3896e-+00 1.3877e+00 1.3877e+00 1.3820e+00
0.7854 1.4925¢+00 1.4905e+00 1.4904¢-+00 1.4824¢+00
1.0472 1.5472¢+00 1.5453e+00 1.5452¢+00 1.5354e+00
1.3090 1.5678e+00 1.5662e+00 1.5661e+00 1.5552¢-+00
1.5708 1.5708e+00 1.5696e+00 1.5695¢+00 1.5582¢-+00
1.8326 1.5738e+00 1.5731e+00 1.5730e-+00 1.5621e+00
2.0944 1.5944¢-+00 1.5942¢+00 1.5941e+00 1.5843¢+00
2.3562 1.6491e+00 1.6494e+00 1.6493¢+00 1.6413e+00
2.6180 1.7520e-+00 1.7527e+00 1.7526e+00 1.7469¢+00
2.8798 1.9139¢+00 1.9149¢-+00 1.9148¢+00 1.9119¢+00
I2(E, h) 2.2710e-03 2.3927¢-03 1.5906¢-02
1°(E, h) 1.9887¢-03 2.0902¢-03 1.5906¢-02
CPU-time 0.991248 0.998566 1.079159
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Table 11: Rate Convergence of FDCB, FDCS, and FDCT for [?(E, h) in Example 4.

N | FDCB-I%(E,h) @ Rate FDCS—I?(E,h) Rate FDCT—-I?(E,h) Rate

12 2.2710e-03 2.3927¢-03 1.5906¢-02

24 1.1469¢-05 7.6294 2.2262¢-05 6.7479 3.5927¢-03 2.1464

48 4.7253e-08 7.9231 8.3936e-07 4.7291 8.9521e-04 2.0048

96 1.8037¢-10 8.0333 5.0487e-08 4.0553 2.2372¢-04 2.0005
Table 12: Rate Convergence of FDCB, FDCS, and FDCT for [ (E, h) in Example 4.

N | FDCB-I®(E,h) | Rate | FDCS—I®(E,h) Rate | FDCT—I”(E,h)  Rate

12 1.9887e-03 2.0902¢e-03 1.5906e-02

24 9.9386e-06 7.6446 1.8466¢-05 6.8226 2.8665e-03 2.4722

48 4.0761e-08 7.9297 6.7008e-07 4.7844 7.1427e-04 2.0047

96 1.5487e-10 8.0400 4.0282e-08 4.0561 1.7851e-04 2.0005
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These figures would visually demonstrate the perfect agreement between the exact solutions
u(x) =x+1, u(x) =sin(x) and the numerical approximations obtained by the FDCB
method for N = 24. The curves for the exact and approximate solutions would be virtually
indistinguishable, graphically confirming the high accuracy quantified in Tables 1 and 5.

Similarly, this figure would show the plot of u(x) = e* and u(x) = cosx + x and its FDCB
approximation. The close overlap of these curves would provide visual validation of the excellent
results shown in Tables 7 and 10 for Examples 3 and 4.

5. Conclusion

This paper demonstrates that combining a high-order 7-point finite difference method with composite
Boole's rule (the FDCB method) is a highly effective strategy for solving Fredholm integro-differential
equations. The results show that this approach is not only more accurate but also often faster than using
lower-order methods like those based on the Trapezoidal or Simpson's rules. This is because the high-
order FDCB method achieves excellent precision with a coarser grid, reducing the overall size of the
problem and leading to lower computational times. The FDCB scheme provides a superior balance of
speed and accuracy. It is a robust and efficient numerical technique that outperforms traditional
methods, making it a highly recommended choice for solving these types of equations. We plan to
investigate the use of the B-spline collocation method for solving fractional-order Fredholm integro-
differential equations, as this technique shows strong potential for achieving higher numerical
accuracy. For more details, see [14].
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