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Abstract: This study provides a comprehensive overview of the significance of 

studying the nonlinear vibration characteristics of beam-like structures, such as 

cantilever pillars and plates, that have non-linear vibration characteristics that 

deserve special attention. Furthermore, beam-like members such as radio wires, 

rotor edges, airplane wings, supersonic airfoils of high rises, and others are used 

in building construction works, and they are engineered strategically to withstand 

bowing sideways. However, dynamic analysis when these structures is highly 

subjected to alternating and large axial strains, complex and often nonlinear, and 

these analyses may demand advanced modelling and analytical techniques which 

do not exist. The dynamic behavior of flexible structures is described using a set 

of equations that includes non-linear ordinary differential equations and such 

equations are tackled by the Ritz-Galerkin approach which will be covered in this 

paper, in comparison with the Galerkin and Lindstedt-Poincaré techniques, it 

demonstrates higher accuracy and lower cost, thus providing essential additional 

information on how to construct models of nonlinear vibrational systems 

properly. This study has addressed the limitations of the applicability of linear 

beam theory and pointed out the importance of nonlinearities for the dynamic 

behavior of beam-like structures. It discusses various types of nonlinearities that 

significantly affect the beam model motion equations, which are extremely useful 

for engineers and scientists. The research concentrated on the utilization of 

approximation techniques, namely the Galerkin method and the Lindstedt-

Poincaré approach, in the analysis of beam vibration issues characterized by 

nonlinearity. This thoroughly examines the problem of nonlinear vibrations in 

cantilever beams and plates. It examined recent efforts in the advancement of 

approximation approaches for forecasting and assessing the nonlinear dynamic 

behavior of structural components. 
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1. Introduction 

A beam is usually slender and is designed to resist lateral action through the bending of the member; 

it forms a basic part of most structures, like antennas, helicopter rotor blades, airplane wings, tall 

buildings, and towers. Operations dealing with the structural integrity of the above beam-like structures 

have a significant magnitude of importance for engineers, as they are vulnerable to frequent exposure 

to dynamic loads. One of the most common theories used for small displacement analysis is the linear 

beam theory. This theory allows the calculation of the natural frequencies, mode shapes, and responses 

due to excitations. However, when the displacements become of great value, the traditional linear beam 

theory does not so accurate a prediction of the dynamic characteristics of the system. The appearance 

of geometric and other nonlinearities is only important when highly flexible beams develop substantial 

displacements. For the previously independent vibration modes, the presence of nonlinearities may 

interlink them: the modes can interact and exchange energy [1-3] . The modelling of beam elements, 

especially when large deflections are taken into consideration, nonlinearities such as nonlinear inertia, 

curvature, shear deformation, Poisson effects, and warping must be considered. Apart from geometric 

and inertial nonlinearities, beam-like structures dynamic behavior can be much influenced by damping 
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processes. Cantilevers can undergo large oscillations of large amplitudes for excitations at the base of 

very small magnitudes. However, it is rather difficult to predict the behavior of a cantilever undergoing 

oscillations of very large amplitudes with sufficient accuracy due to the presence of several forms of 

nonlinearities, geometric nonlinearities as well as inertial nonlinearities arising from centerline 

inextensibility [4]. Nonlinear beam vibration with time-dependent boundary conditions means the 

deflection of the beam borders, which are constrained to undergo time-varying displacements. Such 

an incidence can be found in complex arrangements that involve one structural member interacting 

with another or cases where the beam is subjected to time-varying external stresses. The beam's 

vibration is nonlinear since large amplitudes have been developed, which creates huge changes in the 

beam deflection and responsiveness [5]. There are three primary methods for analyzing nonlinear 

vibrations: Lindstedt's perturbation method, the iterative method, and the Ritz-Galerkin method. While 

significant progress has been made in nonlinear vibration analysis for beam structures, further research 

is needed to improve the accuracy and efficiency of both modelling and analytical techniques. Recent 

advancements in approximation methods for predicting nonlinear vibrations in cantilever beams and 

plates have been scarcely explored in detail. This review aims to emphasize the importance of studying 

nonlinear vibrations in cantilever beams and plates, focusing on the limitations of linear beam theory. 

It highlights the necessity of nonlinearities in obtaining realistic dynamic response prediction of 

structures, determines the most significant nonlinearities for beam modelling and analysis, and outlines 

current developments in approximate methodologies.The review concludes with helpful 

recommendations to researchers and engineers, guiding the development of more effective and 

accurate modelling and analysis methodologies for beam-like structures. The paper aims at a 

comparison of the nonlinear vibration behavior of beam structures, with a special emphasis on 

Lindstedt-Poincaré and Galerkin methods, analytical and numerical solutions, and examining a 

combined approach to enhancing the precision of the solution and computational efficiency for 

nonlinear vibration problems. 

2. Lindstedt-Poincaré Method 

Mathematicians typically use perturbation as a technique to approximate complex problems that are 

impossible to solve exactly [6]. The main methods of solving nonlinear differential equations refer to 

the perturbation methods. Among them, the so-called Lindstedt-Poincaré method is rather general and 

powerful. It applies to nonlinear oscillators for which the restoring force is not linear. Recent 

enhancements to the Lindstedt-Poincaré method diminish processing expenses while maintaining 

accuracy. A streamlined method proposed by a study [7] is effective for higher-order nonlinear free 

vibrations. This approach facilitates quicker analysis of systems with several vibration modes and 

simplifies the resolution of nonlinear differential equations. The streamlined method aligns effectively 

with numerical solutions in systems exhibiting significant nonlinearities. This approach may assist 

engineers and academics in precisely and efficiently analyzing complex vibrating systems. The 

suggested approach reduces ineffective higher-order expansions, boosting convergence while 

maintaining solution accuracy. Although their work mostly concentrates on free vibrations, a similar 

simplification can help forced vibrations in elastic beams. The governing equation for the nonlinear 

free vibration of a beam using the SLP method: 

(1)                                                       ẍ + 𝜔2𝑥 + 𝜖𝑓(𝑥, ẋ) = 0 

Simplified perturbation method (SLP) in Equation (1), 𝜖 is the small nonlinearity parameter. 

Eliminating pointless higher-order expansions in the Lindstedt-Poincaré method greatly reduced 

computational complexity without sacrificing accuracy, hence simplifying the procedure [1]. 

Particularly for mild to moderate nonlinearities, their results revealed that this method produces very 

good approximative frequency correction in line with numerical simulations. Moreover, by displaying 

a faster convergence rate than traditional perturbation methods, their method assured consistent 
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findings with fewer processing steps. Especially for higher-order approximations, the method proved 

to be rather beneficial since it is over 40% more efficient than conventional Lindstedt-Poincaré 

methods. The work presented a useful method to find frequency adjustments with much fewer terms 

by using an effective power-series expansion, hence balancing accuracy with computing practicality. 

A method is a strong candidate for merging with Galerkin-based beam solutions since the technique 

effectively approximates higher-order corrections while decreasing the number of iterations required. 

The ability of the simplified Lindstedt-Poincaré approach to effectively determine frequency changes 

while decreasing computational complexity is its main advantage. In many nonlinear vibration 

problems, though, a more methodical technique is needed to convert the governing equations into a 

form allowing an iterative solution. The introduction of a new variable 𝛼 = 𝑥(𝑡), allows the differential 

equation to be recast in a perturbation framework. This change enables the expression of the problem 

in terms of a tiny parameter 𝛼, which denotes the amplitude of oscillation, and generates a power-

series expansion method for nonlinear beam problems [8-10].   

There are two effective tools, such as the Runge-Kutta (RK4) method, along with the Multiple-Scales 

(MS) and Multiple-Scales Lindstedt-Poincaré (MSLP) methods, for the analysis of nonlinear systems. 

These approaches allow for more precise solutions, especially when linear models fail to capture the 

complex nonlinear behaviour of the system. When looking at nonlinear systems in this way, numerical 

models using the Runge-Kutta (RK4) method, the Multiple-Scales (MS) approach, and the Multiple-

Scales Lindstedt-Poincaré (MSLP) strategy work well. These methods work well to fix the cantilever 

beam system's natural complex nonlinearities, which helps us learn more about how it works. Since 

nonlinear activities like frequency shifts and mode coupling define the actual system behavior, linear 

models cannot fully depict the situation. Particularly in such a system as a suspension beam with a 

breathing crack [3], such effects can have dramatic impacts on behavior. Advanced techniques need to 

be used with nonlinearities included if one is going to be able to truly forecast this behavior. Optimal 

solutions are able to be derived from mathematical techniques such as Multiple-Scales (MS) and 

Multiple-Scales Lindstedt-Poincaré (MSLP) methods, and also numerical techniques such as the 

Runge-Kutta (RK4) method. These techniques provide us with better estimations, particularly in 

scenarios where linear models fail, which accounts for the system's complex nonlinear behavior. 

A. Multiple-Scales (MS) Method: Assume an asymptotic expansion of the displacement 𝑞(𝑡) as: 

 

(2)                                    𝑞(𝑡) = 𝑞0(𝑡, 𝑇0, 𝑇1) + 𝜖𝑞11(𝑡, 𝑇0, 𝑇1) + 𝑂(𝜖2) 

while 𝑇0 = 𝑡 and 𝑇1 =  𝜖𝑡, at 𝑂(𝜖), we obtain the linear response equation, and at 𝑂(𝜖2) the nonlinear 

terms are handled by eliminating secular terms. The Multiple-Scales (MS) technique divides the 

solution into more straightforward components to approximate the simulation of nonlinear vibration 

system responses, i.e., a cantilever beam. It approximates nonlinearity by stretching the displacement 

𝑞(𝑡) in powers of a small parameter ϵ. It enables you to avoid unphysical growth in solutions, decouple 

the slow and fast time scales of the system, and manage nonlinear effects at different orders. Finally, 

the approach yields more accurate approximations to complicated nonlinear systems, where the 

conventional techniques can fail. 

Multiple-Scales Lindstedt-Poincaré (MSLP) Method: For MSLP, introduce a frequency correction 

(3)                                                         𝛺 = 𝜔𝑛 + 𝜖𝛺1 + 𝑂(𝜖2) 

This adjustment improves the accuracy of the approximation for nonlinearities. With a frequency 

correction application, the Multiple-Scales Lindstedt-Poincaré (MSLP) approach has to increase in the 

accuracy of solutions for nonlinear systems. This adjustment provides more precise approximations 
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where other methods may not be able to reach with alterations in the natural frequency from 

nonlinearity [8,11]. 

B. Runge-Kutta (RK4) Method: The system is also solved numerically using the fourth-order 

Runge-Kutta method: 

(4)                                             𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

where the intermediate values 𝑘𝑖 are computed based on the function evaluations. The Runge-Kutta 

(RK4) method intends to provide differential equations with a precise numerical solution, particularly 

in cases when exact analytical solutions are either difficult or impossible to find. Using intermediate 

values 𝑘1 helps solve the nonlinear differential equations controlling the motion of the cantilever beam 

by iteratively approximating the solution over small time steps. 𝑘2 helps improve the accuracy of the 

solution at each step through intermediate values. This approach is extensively applied because of its 

harmony between computing economy and precision [12]. 

2.1. Nonlinear Behavior in Elastic Beams 

One of the most extensively used structural members is the elastic beam. Long before the elasticity 

theory was developed, scholars had already carried out extensive studies on elastic beams. It's hard to 

solve the nonlinear flexural equation of elastic beams [13] without taking into account the properties 

of the material, its strength and its constitutive relationships. Over the past decades, the majority of 

research in nonlinear vibration has focused on the application of approximate methods. A 

multidimensional Lindstedt–Poincaré (MDLP) method was used by [11]  as a rough way to solve the 

nonlinearity in the beam's governing equation when it moves in one direction. In this case, expanding 

the governing equation answer into harmonics and perturbing to achieve near answers yields the 

solution. This allowed them to analyze the forced response of a beam going in one direction with an 

internal resonance between the first two transverse modes. MDLP response curves have the same 

internal resonance as thin plates without beams. This is because all of these systems are cubic nonlinear 

and have a similar frequency distribution. We compared the results from the MDLP method and the 

incremental harmonic balance method and found that the MDLP method is easier to use and more 

effective for studying the nonlinear vibration of systems that move in one direction compared to other 

perturbation methods for single-degree-of-freedom system analyses [11]. 

2.2. Nonlinear Vibration of a cantilever beam with point load and lumped mass 

The Lindstedt-Poincaré approach is explained in detail, along with recent advancements and practical 

uses. The method's ability to solve nonlinear differential equations, particularly those with nonlinear 

restoring forces, is thoroughly justified at the outset of the argument. Recent advancements, such as 

the simplified technique in [7], highlight the method's effectiveness and soundness for higher-order 

nonlinear systems. After that, the method shifts to particular uses like MDLP for internal resonance 

systems  [11] and cantilever beams with lumped masses [9]. These circumstances illustrate that the 

approach is flexible and superior to traditional perturbation techniques. Figures such as the frequency 

response curves in [6] and the energy harvester model in [10] help to clear the uncertainty and show 

the effectiveness of the technique. Demonstrating its adaptability, the technology is used in microbeam 

analysis and energy collection [14]. Talks on spinning machines [13] and hard-coating laminate plates 

[15] stress the adaptability and precision of the technique. 

Combining the latest developments, like the simpler techniques in [4,7], this study demonstrates the 

ongoing evolution and application of the method in contemporary engineering. The Lindstedt-Poincaré 

method has proven to be highly adaptable in solving a variety of technical problems, especially in 

understanding complex vibrational processes. In a study [16], nonlinear damping devices were used 
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to regulate high-frequency rotational oscillations in self-excited drill string vibrations. The comparison 

between analytical solutions and time-domain simulations revealed the method's efficacy in predicting 

torsional dynamics. The findings also highlighted how nonlinear stiffness improves damping 

efficiency and contributes to overall system stability. In  2017, the study [9] used the multiple-scales 

Lindstedt-Poincaré (MSLP) method to look into the forced vibration of a cantilever beam with a 

lumping mass as shown in Figure 1. This figure illustrates the energy harvester model of a cantilever 

beam, elucidating the impact of external forces on the system. The apparatus comprises a lumped mass 

positioned at the free end of the beam. This mass influences the beam frequency. This model offers 

substantial insights into the nonlinear vibrational behavior of cantilever beams under forced excitation. 

This is very accurate in comparison to alternative approximation approaches. The equation of motion 

and boundary condition of the beam are presented using the variational approach based on the extended 

Hamiltonian principle.  

(5)        𝑚𝑦̈ + 𝑀𝑡𝛿(𝑠 − 𝐿)𝑦̈(𝐿, 𝑡) + 𝑐𝑦𝑦̇ + 𝐸𝐼𝑦𝑖𝑣 = 𝐹𝐴 cos(Ω𝑡) 𝛿(𝑠 − 𝐿) − 𝐸𝐼[𝑦′(𝑦′𝑦′′)′]′ −

                
1

2
{𝑦′ ∫ [∫ 𝑦′2𝑑𝑠

𝑠

0
]

′′
𝑑𝑠

𝑠

𝐿
}

′
+ 𝑚𝑔[(𝑠 − 𝐿)𝑦′′ + 𝑦′] + 𝑚𝑔 [(𝑠 − 𝐿)

3𝑦′2𝑦′′

2
+

𝑦′3

2
] 

It involves significant terms such as inertia, damping, and flexural rigidity in this dynamic equation, 

considering the nonlinear vibration of the cantilever beam due to harmonic excitations from the 

external world. It simplifies the equation into a system of coupled nonlinear ordinary differential 

equations that can be readily solved with the Multiple-Scales (MS) and Multiple-Scales Lindstedt-

Poincaré (MSLP) methods. These techniques prolong the validity of analytical approximations, 

especially in cases having strong nonlinearities where normal perturbation methods fail. The system is 

subsequently analyzed using the MS and MSLP approaches [9,13] after further reduction to a system 

of coupled nonlinear ordinary differential equations. Particularly in cases of strong nonlinearity when 

normal perturbation methods fail, these approaches prolong the validity of analytical approximations. 

These parameters make it easier to model the actual response of the beam to large deformations. The 

equation below is the improved formulation for the nonlinear vibration of the beam. The tip mass 

cantilever beam's equation of motion due to damping and flexural stiffness is below: Equation of 

motion for nonlinear vibration of the beam: 

(6) 𝑚ÿ + 𝑀𝑡𝛿(𝑠 − 𝐿)ÿ(𝐿, 𝑡) + 𝑐ẏ + 𝐸𝐼𝑦(𝑖𝑣)(𝑠, 𝑡)  = 𝐹𝐴𝑐𝑜𝑠(𝛺𝑡)𝛿(𝑠 − 𝐿) − 𝐸𝐼𝑦(𝑠, 𝑡)
𝑑𝑦

𝑑𝑠
−

∫
𝐿

0
𝑦(𝑠, 𝑡) (

𝑑𝑦

𝑑𝑠
)

2
𝑑𝑠 

The parameters and notations follow the conventions in previous research [9,15,17], where: 𝑚 is the 

mass per unit length of the beam, 𝑀𝑡 is the lumped mass at the free end of the cantilever, 𝑐 is the 

coefficient of linear viscous damping per unit length, 𝐸 is Young's modulus, 𝐼 is the beam's cross-

sectional moment of inertia,g is the gravitational acceleration represents the arclength along the beam. 

𝑡 is time, 𝛿(𝑠 − 𝐿) is the Dirac delta function at the free end, 𝛺 is the excitation frequency, 𝐹𝐴 is the 

amplitude of the external force, and 𝑦(𝑠, 𝑡) is the transverse displacement of the beam as a function of 

position 𝑠 and time 𝑡. The nonlinearities, including frequency shifts, mode coupling and asymmetric 

frequency responses, have a considerable impact on the system's behavior. For accurate predictions, 

the inclusion of these nonlinear effects is essential. As shown in prior studies, particularly the 

investigation of a cantilever beam with a breathing crack [3,18] accurate forecasts require more 

advanced analytical techniques, as these nonlinearities significantly alter the system's behavior. From 

the results, it is obvious that with the MSLP method, the frequency response curve of the first mode is 

in excellent agreement with that obtained by the fourth-order Runge-Kutta method within the 

concerned beam deflection. However, the frequency response curve of the first mode obtained by the 

multiple-scales method deviates when the beam deflection is large, as shown in Figure 2.  
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Figure 1: The scheme of the cantilever beam energy harvester with mass on the free ends. 

 

Figure 2: Comparison of the first, second, and third mode Frequency Response Curves (FRCs) using 

the MS method, MSLP method, and numerical simulation [1]. 

The frequency response is also hardly predictable by either the multiple-scales method or the MSLP 

method when the excitation frequency is around either the second or third natural frequency. The study 

provides insight into the effectiveness of these methods for analyzing the forced vibration of cantilever 

beams with lumped mass [9].  Further advancements, such as [7], make the Lindstedt-Poincaré 

technique easier to manage forced vibration difficulties in nonlinear systems while keeping its validity. 

These improvements improve approach performance by simplifying higher-order nonlinearity 

calculations without losing accuracy. The forced vibrations of the damped duffing oscillator examined 

at [6] as:  

(7)                                        𝑢̈ + 𝜔𝑜
2𝑢 + 2𝜀2𝜇𝑢̇ + 𝜀𝛼𝑢3 = 𝜀2f𝑐𝑜𝑠Ω𝑡 

After examining a higher order of perturbation method, to re-order the excitation and damping, conduct 

the fast and slow time scales as 𝑇0 = 𝑡, 𝑇1 = 𝜀𝑡 𝑎𝑛𝑑 𝑇2 = 𝜀2𝑡. Then they examined an MSLP method 

as 

(8)                               𝜔2𝑢′′ + 𝜔𝑜
2𝑢 + 2𝜀2𝜇𝜔𝑢′ + 𝜀𝛼𝑢3 = 𝜀2𝑓𝑐𝑜𝑠

Ω

𝜔
𝑇0 

Again, used a fast and slow time scale as cap T sub 0 equals tau, cap T sub 1 equals script epsilon tau, 

andcap T sub 2 equals script epsilon squared, tau,  used a fast and slow time scle as 𝑇0 = 𝜏, 𝑇1 =

𝜀𝜏 𝑎𝑛𝑑 𝑇2 = 𝜀2𝜏 where time transformation (𝜏) = Ω𝑡. MSLP shows non-linear interactions, and its 

rhythmic strength changes depending on the input frequency. The findings indicate that the first mode 
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frequency response aligns with the advanced expectations of the fourth-order Runge-Kutta method. 

Nevertheless, increased deflections result in inconsistencies. 

 

Figure 3: Frequency Response Curve Comparison for MS, MSLP Methods, corresponding to (a) 

α=1, (b) α=100 (c) α=1000 [2] 

The methods compared in the Figure 3 MSLP data illustrating how the cantilever beam energy 

collector reacts to strong shocks. The added weight at the free end of the beam changes how it vibrates. 

It depicts the impact of fracture depth on resonance frequencies and amplitudes using frequency 

response graphs. These results are the same as the ones from the nonlinear dynamic equation explained 

earlier. This shows how important it is to include nonlinearities in predictions about structures, as 

beams do not always move in a perfectly straight line; their motion can be influenced by nonlinearities, 

such as cracks, varying stiffness, or external forces. Understanding these effects is crucial in predicting 

structural responses accurately. Based on nonlinear factors like lumped mass or fracture depth, the 

method can accurately predict how a structure will behave, as shown by the frequency response curves 

from [3, 9]. This demonstrates the practical application of advanced nonlinear methods to predict and 

analyze actual actions. They developed and improved nonlinear dampening techniques to suppress 

drill string vibration self-excited oscillations with the Lindstedt-Poincaré method [16]. Time-domain 

simulations verified the validity of torsional vibration prediction by the method. According to the 

study, the Lindstedt-Poincaré method works better to model situations with large changes in shape, 

changes in the resonance frequency, and energy transfer between vibrational modes. This makes it a 

powerful tool in studying complicated nonlinear dynamics. Aside from such situations, the method has 

worked well in other technical uses, important mention being in solving complex vibrational problems. 

For example, [16] used it to design nonlinear damping devices to control high-frequency torsional 

oscillations in self-excited drill string vibrations. Comparing analytical results with time-domain 

simulations confirmed the method's torsional dynamics correctness. 

Prior research [9] indicates that the MSLP methodology is both efficient and effective for analyzing 

such systems, even in the presence of significant deformations. Figure 2 investigated the frequency 

response curves for the Multiple Scales (MS) method, the Multiple Scales Lindstedt-Poincaré (MSLP) 

method, and the computer models using the same set of parameters. Particularly at higher frequencies, 

the MSLP method provides an exact prediction of the system's behavior, which rather roughly 

corresponds with computer simulations. In contrast, the MS method shows some discrepancies from 

numerical data and suggests that under these specific conditions, the MSLP method is more appropriate 

for the study of the system's response. The narrative demonstrates the outcomes of the MSLP method, 

which admirably illustrates the nonlinear interaction modelling and study. The study [3] gives a good 

look at a beam with a breathing crack, showing how nonlinearities greatly impact the system's 

response. The dynamic equation of motion of the cracked beam was governed as: 

(9)                                                  𝑀𝑈̈ + 𝐶𝑈̇ + (𝐾001  − 𝐾𝑡)𝑈 =  𝐹 
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Where the stiffness matrix 𝐾𝑡 is time-variant due to the repetitive crack opening and closing. The 

nonlinear equation derived as  

(10)                       𝑀𝐶 𝜂̈𝐶  + 𝐶𝐶𝜂̇𝐶  + 𝐾𝐶𝜂𝐶  − 𝐾𝑇𝜂𝐶 ∑ 𝑘𝑛 cos(𝑛𝜔𝑡 + 𝜑𝑛) = 𝐹𝐶
𝑁
𝑛=1  

Where 𝑀𝐶 =   ψ𝐶
𝑇𝑀ψ𝐶 , 𝐶𝐶 = ψ𝐶

𝑇𝐶ψ𝐶 , 𝐾𝐶 = ψ𝐶
𝑇𝐾001ψ𝐶 , 𝐾𝑇 = ψ𝐶

𝑇𝐾02ψ𝐶, 𝐹𝐶 = ψ𝐶
𝑇𝐹, ψ𝐶𝜂𝐶  and 

ψ is the matrix of the modal transformation.  

 

Figure 4: Discretisation of the beam with the breathing crack [3] 

Figure 4 illustrates a cantilever beam exhibiting a breathing fracture, demonstrating how a singular 

location can compromise structural integrity. It hinders movement and responsiveness. The discretised 

method, which decomposes the beam into components, accurately captures these effects and delivers 

precise numerical analysis. The distribution of stiffness post-fracture influences energy dissipation and 

frequency response. Fracture models are essential for comprehending how structures react to varying 

stresses. Furthermore, as shown in [19], the approach has shown success in simplifying challenging 

beam vibration issues, lowering computational requirements while preserving great precision. The 

objective is to diminish the disparity between anticipated and actual responses. The balance of the 

residual or error over the affected region is attained using weighing methods. The authors used the 

Duffing equation as two methods for evaluating Lindstedt–Poincaré–type perturbation methods for the 

nonlinearity, the governing equations.  

(11)                                             𝑥̈ + 𝜔𝑜
2𝑥 + 𝜀2𝑥3 = 0,   

where its solution is;   

𝑥(𝑡) =  𝑥𝑜(𝑡) + 𝜀𝑥1(𝑡) + 𝜀2𝑥2(𝑡) + ⋯ 

and  fundamental frequency  

𝜔2 = 𝜔𝑜
2 + 𝜀𝜔1 + 𝜀2𝜔2+…… 

after removing the secular terms and substituting the 𝜏 = 𝜔𝑡, 𝑑 𝑑𝑡 = 𝜔𝑑/𝑑𝑡⁄  into equation 

𝜔2𝑥′′ + 𝜔𝑜
2𝑥 + 𝜀𝑥3 = 0 

the first approximate solution was considered as: 

(12) (𝜔𝑜
2 + 𝜀𝜔1 + 𝜀2𝜔2)(𝑥0

′′ + 𝜀𝑥1
′′ + 𝜀2𝑥2

′′) + 𝜔𝑜
2(𝑥𝑜 + 𝜀𝑥1 + 𝜀2𝑥2) + 𝜀(𝑥𝑜 + 𝜀𝑥1 + 𝜀2𝑥2)3 = 0 

The second approximate solution was considered as: 

(13)  𝜔2 (𝑥0
′′ + 𝜀𝑥1

′′ + 𝜀2𝑥2
′′) + (𝜔2 − 𝜀𝜔1 − 𝜀2𝜔2)(𝑥𝑜 + 𝜀𝑥1 + 𝜀2𝑥2) + 𝜀(𝑥𝑜 + 𝜀𝑥1 + 𝜀2𝑥2)3 = 0 

Both method calculated to find the second response and frequensies, their results showed in Figure 5, 

showed that the both methods are concide with the exact solution. They concluded that both methods 

have no significant effect on over another but first method is not valid for larg parameters.  
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Figure 5: Comparison between approximate solutions with the exact solution [19] 

The dynamic equation results from the studies [9, 15, 17] show that frequency response curves often 

show the difference between linear and nonlinear systems. Nonlinear effects cause resonance shifts, 

asymmetric frequency responses, and higher amplitudes at certain frequencies. For the mode shapes 

and energy exchange, linear models do not consider nonlinearities, which result in mode coupling and 

energy transfer between modes. Studies reveal that nonlinear methods, including Lindstedt-Poincaré 

and Galerkin, are more accurate than linear methods at predicting behaviors in the actual world. To 

learn more about how beams behave when they are not moving in a straight line, gives a good look at 

a beam with a breathing crack, showing how nonlinearities greatly impact the system's response.  

 

Figure 6: Variation in bending stiffness of the cracked beam [3] 

Figure 6 depicts the impact of fracture depth on resonance frequencies and amplitudes using frequency 

response graphs. These results are the same as the ones from the nonlinear dynamic equation we talked 

about earlier. This shows how important it is to include nonlinearities in predictions about structures. 

The Lindstedt-Poincaré method turns complicated nonlinear differential equations into forms that can 
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be solved by using an inadequate parameter α that stands for the oscillation amplitude [3]. In 2015, 

[15] applied the Lindstedt-Poincaré perturbation method to study the natural features of a hard-coating 

cantilever plate. In addition, such solutions were experimentally validated by FEM and measurement 

techniques. The authors have used it to understand the dynamics behavior of hard-coating damping 

structures and give judgment about the applicability of the perturbation method in the free vibration 

analysis of the hard-coating laminate plates. Following the natural frequencies and mode shapes 

calculation based on nonlinear elasticity plate theory, the Lindstedt–Poincaré perturbation method has 

been used. Approximate analytical results have been compared to the FEM obtained results and 

experimental measurements. The results are consistent with each other. This paper also reflects that 

the natural frequencies obtained by a linear analytical method have a huge gap with those obtained 

from the approximate analytical method. Thus, the study recommended that the Lindstedt-Poincaré 

perturbation method may be employed in the analysis of free vibration for hard-coating laminate plates.  

As noted in [4], recent developments in the Lindstedt-Poincaré approach have greatly raised its 

accuracy and efficiency. For systems with higher-order nonlinearities, especially, a simplified method 

was presented that lowers computing cost while preserving great accuracy. This improvement makes 

the technique even more fit for contemporary engineering uses, where computational performance is 

absolutely vital. Additionally, [7] proposed a simplified Lindstedt-Poincaré approach that reduces 

pointless higher-order expansions and increases convergence rates without compromising accuracy. 

This approach performs rather well for considering systems with minor to intermediate nonlinearities 

since it fits well with numerical simulations. As part of microbeam analysis, [14] used the Lindstedt-

Poincaré method to look into how cantilever microbeams react to superharmonic excitations. The work 

showed how things like thickness, length scale and activation forces can change the way the system 

reacts. The results revealed that despite lowering the response amplitude, raising the length scale 

parameter increases the superharmonic resonance frequency, therefore offering important information 

for microbeam design. Moreover [20] investigated the nonlinear vibrations of elastic beams including 

internal resonances using the Lindstedt-Poincaré approach. The work proved that the approach is a 

trustworthy instrument for evaluating systems with several degrees of freedom since it can effectively 

record intricate interactions between vibrational modes [20]. The Lindstedt-Poincaré method was used 

to simulate the nonlinear dynamics of energy-collecting cantilever beams with tip masses. The 

technique can maximize energy harvester designs since it accurately predicts frequency response even 

under high deflections [19]. Finally, [13] studied rotating machinery using the Lindstedt-Poincaré 

technique, where nonlinearities affect system stability. The technique predicted torsional vibrations 

and created damping solutions for high-speed rotating systems, confirming its applicability across 

engineering disciplines. 

3. Galerkin Method 

The Galerkin method has been one of the successful numerical methods for obtaining solutions of 

nonlinear differential equations for elastic beams, enabling one to deal with resultant nonlinear 

algebraic equations. It is frequently employed to estimate complex differential equations, such as those 

governing beam vibrations. It selects boundary-compliant trial functions to elucidate the matter. Recent 

research has shown that the Galerkin method not only simplifies the complex nonlinear differential 

equations controlling elastic beams but also improves the dependability of results in practical 

applications. Recent research published by [13, 21] solved the nonlinear differential equation of 

deflection of the elastic beam using the Galerkin technique [14], showing that the Galerkin approach 

allows nonlinear partial differential equations be transformed into ordinary differential equations, so 

greatly simplifying analysis, the use of this method to nonlinear beam deflection equations has been 

extensively tested. Furthermore, this work showed the efficient capturing of beam dynamics under 

different external stresses and boundary conditions by the Galerkin technique. The Galerkin technique 
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was used to estimate a set of nonlinear algebraic equations, proving its efficiency in nonlinear 

situations. Their Galerkin technique for solving the differential problem yielded a trigonometric 

function with fitted coefficients in Chebyshev polynomials [13]. The third-order approximation 

matched the precise solution of the elliptic functions, proving the Galerkin method's efficacy and 

superiority for nonlinear differential equations. Confirming the method's stability, research by [4] 

showed how well it could solve nonlinearities in structural dynamics. They considered a fractional-

order strongly nonlinear oscillator subject to random harmonic excitations: 

(14)                                 𝑥̈ + 𝜔𝑜
2𝑥 + 𝜀2𝜇𝐷𝑡

𝛼𝑥 + 𝜀𝑔(𝑥, 𝑥̇) = 𝜀2𝜉(𝑡) 

where derivatives, ε, μ, and 𝜔0 are nonnegative parameters, to be an odd function, and 𝐷𝑡
𝛼 

(𝑥, 𝑥̇) represents the strongly nonlinear part, as well as they considered the following strongly 

nonlinear Duffing oscillator with fractional-order damping and random external harmonic excitation: 

(15)                          𝑥̈ + 𝜔𝑜
2𝑥 + 𝜀2𝜇𝐷𝑡

𝛼𝑥 + 𝜀𝛿𝑥3 = 𝜀2𝛾𝑐𝑜𝑠(Ω𝑡 + ℎ𝑊(𝑡)) 

where 𝛿 is the coefficient of the nonlinearity, 𝛾 is the harmonic excitation intensity, 𝛺 is the frequency 

the harmonic function and 𝑊(𝑡) is a standard Wiener process with the intensity ℎ.  

 

Figure 7: Frequency– amplitude response (a) δ = 1.0; (b) δ = 10; (c) δ = 100; (d) δ=250 [4] 

Another researcher [22] employed this technology to project beam vibrations under harsh 

circumstances. This methodology enables scientists to obtain precise answers with minimal effort. It 

decomposes the complex task into more manageable, recognizable trial functions that satisfy the 

problem's boundary conditions. The objective at that stage is to reduce the "error" (the disparity 

between the actual response and the estimation).  The second-order differential equation for nonlinear 

beam was conducted as;  

(16)                                                           𝑁(𝑥, 𝑦, 𝑦𝑘 , 𝑦′, 𝑦′′, 𝑝) = 0 
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Where; 𝑥 ∈ [𝑎, 𝑏] and 𝑦, 𝑦′, 𝑦′′, 𝑝, 𝑥, 𝑎 𝑎𝑛𝑑 𝑏 are nonlinear terms, the approximate solution was 

assumed as: 

(17)                                                             𝑦 = ∑ 𝐴𝑛𝑌𝑛(𝑥)𝑀
𝑛=0  

where 𝑌𝑛(𝑥) satisfies the boundary conditions, and 𝐴𝑛 are coefficients to be determined with the 

limitations by an integer 𝑀.  The research applied the Galerkin method: 

(18)                                         ∫ (𝑥, 𝑦, 𝑦𝑘, 𝑦′, 𝑦′′, 𝑝) ∑ 𝛿𝐴𝑛𝑌𝑛(𝑥)𝑀
𝑛=0 𝑑𝑥

𝑏

𝑎
 

Galerkin method-based boundary-compliant trial functions have been extensively used to approximate 

complex differential equations governing beam vibrations. By balancing the residual error over the 

pertinent area, weighting methods help to minimize the discrepancy between predicted and actual 

results. Research [22] verified in extreme conditions the effectiveness of beam vibrations in nonlinear 

systems.  This method proved effective in the study of nonlinear forced vibration in aircraft wings with 

a rotating unbalanced mass, as outlined in [17]. The study addressed the nonlinear forced vibration of 

aircraft wings carrying a rotating unbalanced mass. To illustrate the application, Figure 8 depicts the 

deformation and undeformed wing coordinate system utilised in the work by [17], which represented 

the nonlinear forced vibration of aircraft wings. The graphic helps visualize the system and gives 

context for the boundary conditions and forces applied during the investigation. 

 

Figure 8: Coordinate Systems of the Wing: Deformed vs. Undeformed States [18] 

The authors showed three-dimensional Cartesian 𝑥𝑦𝑧 and corresponding unit basis vectors 𝑖𝑗𝑘 are 

attached to the fixed reference framework 𝑅. Three Cartesian axes 𝑥′𝑦′𝑧′ and corresponding unit bases 

vectors i′j′k′ are attached to the wing framework 𝑉. Hamilton’s variational principle was used to derive 

the equation of motion and applied boundary conditions using the Galerkin Method to derive the 

equation of force and deformation as:  

(19)  𝐹𝑒𝑚 = [𝑚𝑟𝑟Ω2𝑐𝑜𝑠Ω𝑡 (1 −
𝑤′2

2
) − 𝑚𝑟𝑟Ω2𝑠𝑖𝑛Ω𝑡𝑤′] 𝑖̂ + [−𝑚𝑟𝑟Ω2𝑠𝑖𝑛Ω𝑡𝜃]𝑗̂ +

                             [𝑚𝑟𝑟Ω2𝑐𝑜𝑠Ω𝑡𝑤′ + 𝑚𝑟𝑟Ω2𝑠𝑖𝑛Ω𝑡 (1 −
𝑤′2

2
)] 𝑘̂ 

The study transferred the results of partial differential equations to ordinary nonlinear differential 

equations using the Galerkin method. They obtained the flutter occurrence possibility, frequency 
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response function and multiple scales of the system in different primary resonance cases. Their study 

jumped between the two observed primary resonance cases. In addition to that non-resonant excitation, 

the stability of the system is independent of the rotating unbalanced mass parameter.  This equation 

generally delineates the relationship between a beam's deflection and the elastic constant, mass, 

damping coefficient, and external forces. The issue is addressed by decomposing the principal partial 

differential equation into a more tractable set of ordinary differential equations using the Galerkin 

method. Applying the Galerkin technique, the deflection is represented as an accumulation of mode 

shapes and extended coordinates. This equation encapsulates the system's nonlinear dynamic nature, 

and in the Galerkin method for Elastic Beams in the method effectively approximates solutions to 

differential equations, as examined in research [12,13]. This is accomplished by rectifying or 

orthogonalizing the mistake relative to weighting functions throughout the problem domain. This 

strategy simplifies the intricate, unique differential problem into logarithmic or standard differential 

conditions. Researchers in [7] talked about how useful it is to combine Galerkin's method with easier 

perturbation methods like the Lindstedt-Poincaré method, which makes it even faster to use. A flexible 

tool in beam analysis, this hybrid technique described in [7] enables correct solutions even in the face 

of higher-order nonlinearities.  A difficult topic is deconstructed into smaller, more comprehensible 

components. The Galerkin method has been widely used to solve nonlinear vibration issues in beam-

like structures. When [13] calculated the elastic beam nonlinear reliable equation of deflection, this 

method rightly displayed large deflections and nonlinear dynamics. The method was more accurate 

and consistent, as their numerical outputs were the same. This work clarifies how the Galerkin method 

might solve challenging nonlinear situations, helping students and engineers. Even in [17], the 

Galerkin approach is explained as an efficient method for addressing the complexity of nonlinear 

differential equations. Moreover, [20] demonstrated that even complicated beam behaviors such as 

forced vibrations can be precisely described provided nonlinearities in the beam equations are 

adequately considered for utilizing Galerkin's technique. The fact that the obtained findings closely 

matched analytical solutions emphasises the dependability of the approach in forecasting beam 

responses [13, 16, 23]. Research by [3, 5, 24, 25] illustrates how this equation predicts beam vibrations, 

much like a recipe guides cooking. These researchers investigated several "ingredients" (such as 

cracks, strong forces, or moving supports) using the formula. They deduced the beam's behavior in 

practical settings, ensuring dependability, safety, and efficiency in construction. Another formulation 

of the equation is: 

(20)                          𝑚ẅ + 𝑐ẇ + 𝐸𝐼
𝑑4𝑤

𝑑𝑥4 − 𝑃
𝑑2𝑤

𝑑𝑥2 − + 𝑓(𝑤) = 𝐹(𝑡) 

where the nonlinear effect of beam bending and material properties are captured by this equation. The 

external force is 𝐹(𝑡) and the simplified ordinary differential equations are solved numerically using 

the Runge-Kutta technique or finite element analysis to characterize and predict beam behavior under 

dynamic loads. The same attempt has been done by [26] their results showed in Figure 14.  

Accordingly, the study by [27] conducted the influences of the fluctuating rotating speed, the 

centrifugal force, the pre-twist angle and the pre-setting angle on the nonlinear dynamics of the rotating 

blade. This demonstrated its capacity to handle large deflections and nonlinearly moving structures. 

The results reveal that even in cases of significant nonlinearity, the technique may produce accurate 

and consistent forecasts. This extension of the governing equation forms a series of linked ordinary 

differential equations, making the problem numerically soluble. This equation is a generalized form of 

the Euler-Bernoulli beam equation with additional terms for damping, axial load and nonlinearity as 

shown in Figure 9. The governing equation for the rotating speed and presetting angle.  

(21)                                           𝛺(𝑡) = 𝛺0 + 𝛺1 cos (𝜔𝑡) 
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The torsion angle 𝛼 changes linearly along the spanwise. The presetting angle of the plate root is 𝛼0, 

the tip is and 𝛼1and b is the plate length, so 𝛼 = 𝛼0 +
𝛿

𝑏
𝑥, where 𝛿 = 𝛼1 − 𝛼0 

 

Figure 9: Blade model with variable speed [5] 

The nonlinear ordinary differential governing equations of motion with two degrees of freedom are 

obtained by using the Galerkin method an example of their results is shown in Figure 15 which phase 

portrait associated with chaotic vibration behavior when the system is subjected to certain excitation 

parameters, notably at a frequency ratio of 0.5 (p = 0.5) and a specific rotational speed Ω. Structural 

dynamics and continuum mechanics allow for the development of the governing equation, balancing 

inertial, damping, stiffness and external forces. Implementing the Galerkin approach, complex 

equations may be simplified to ordinary differential equations, simplifying beam deflection analysis 

under diverse loading circumstances. Additionally, the study conducted a composite cantilever plate 

model with high-speed rotating blades that can be changed, analyzing many structural factors 

influencing the variation of blade natural frequency with speed change. The authors also adopted the 

Galerkin method with Chebyshev polynomials to obtain nonlinear ordinary differential equations of 

motion for a two-degree-of-freedom spinning blade. The authors developed a nonlinear wing structure 

model that incorporates a propeller system and coupled it with an incompressible unsteady 

aerodynamic model. They applied Hamilton's variational principle to derive the system governing 

equations and boundary conditions. Applying Galerkin's method, they reduced the obtained partial 

differential equation to conventional nonlinear differential equations for the mode shapes based on the 

rotational speed and frequency as shown in Figure 11 [27]. 
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Figure 10: The model of presetting and pre-twisted cantilever conical shell with varying thickness [28] 

The same attempt done by [28] used a Galerkin’s method to convert the partial differential governing 

equations of motion to a set of nonlinear ordinary differential equations as shown in Figure 10. 

Analyzed the chaotic and periodic motions in the system, the phase portraits, time history diagrams, 

three-dimensional phase portraits, and power spectrum densities (PSD) were obtained. The 

approximate equations are derived as:  

(22)             𝑢𝑜(𝑥, 𝜃, 𝑡) = 𝑢1(𝑡)𝑠𝑖𝑛 (
𝜋

𝐿
𝑥) cos(3𝜃 − 3𝑥) + 𝑢2(𝑡)𝑠𝑖𝑛 (

3𝜋

𝐿
𝑥) cos(𝜃 − 𝑥) 

The same equation was derived for 𝑣𝑜(𝑥, 𝜃, 𝑡) and 𝑤𝑜(𝑥, 𝜃, 𝑡) then derived 𝜑𝑥(𝑥, 𝜃, 𝑡) and 𝜑𝜃(𝑥, 𝜃, 𝑡)  

(23)           𝜑𝑥(𝑥, 𝜃, 𝑡) = 𝜑𝑥1(𝑡)𝑠𝑖𝑛 (
𝜋

𝐿
𝑥) 𝑐𝑜𝑠(3𝜃 − 3𝑥) + 𝜑𝑥2(𝑡)𝑠𝑖𝑛 (

3𝜋

𝐿
𝑥) 𝑐𝑜𝑠(𝜃 − 𝑥) 

(24)                   𝐹1 = 𝐹11𝑠𝑖𝑛 (
𝜋

𝐿
𝑥) 𝑐𝑜𝑠(3𝜃 − 3𝑥) + 𝐹22(𝑡)𝑠𝑖𝑛 (

3𝜋

𝐿
𝑥) 𝑐𝑜𝑠(𝜃 − 𝑥) 

(25)                   𝑀1 = 𝑀11𝑠𝑖𝑛 (
𝜋

𝐿
𝑥) 𝑐𝑜𝑠(3𝜃 − 3𝑥) + 𝑀22(𝑡)𝑠𝑖𝑛 (

3𝜋

𝐿
𝑥) 𝑠𝑖𝑛(𝜃 − 𝑥) 

Using the equations above, the nonlinear equations of motion in terms of generalized displacements 

was obtained. All the inertia terms of 𝑢𝑜, 𝑣𝑜, and 𝜑𝑥 in nonlinear equations of motion can be ignored 

since their influences are small compared to the inertia terms of  𝑤𝑜 and 𝜑𝜃 . Then, derived the 

displacements 𝑢𝑜, 𝑣𝑜, and 𝜑𝑥 with respect to the displacement 𝑤𝑜 and 𝜑𝜃. In their analysis, they 

expressed 𝑢𝑜, 𝑣𝑜, and 𝜑𝑥  in terms of  𝑤1, 𝑤2, 𝜑𝜃1, and 𝜑𝜃2 The detail is shown in [28]. 

 



Eurasian J. Sci. Eng., 11(2) (2025), 155-178                                                                                                                   170 

 

 

 

Figure 11: The 1st-4th mode with a different setting angle [27] 

In 2007, a study by [29] used a Galerkin method to solve the uniform cantilever beam carrying a mass 

at the free end and exposed to sinusoidal base motion ( 𝑦𝑔(𝑡) =  𝑦𝑔𝑠𝑖𝑛(Ω𝑡)). They assumed that the 

beam was initially straight, where L is the length, and 𝜌𝐴 per unit length is a constant mass and constant 

stiffness. 𝐸 is Young’s modulus of the material and 𝐼 is the principal cross-sectional area moments of 

inertia, and 𝛼 is the orientation angle of the beam, s is used to denote arc-length along the beam, as 

shown in Figure 12.  

(26)   𝜌𝐴𝑤̈ + 𝑐𝑤̇ + 𝐸𝐼{𝑤′′′′ + (𝑤′(𝑤′𝑤′′)′)′} + {[𝑤′𝜌𝐴(𝐿 − 𝑠)]′ + 𝑚(𝑤′)′} (𝑦̈𝑔𝑢 + 𝑔. sin(𝛼)) −

1

2
𝜌𝐴 [𝑤′ ∫

𝜕2

𝜕𝑡2  ∫ 𝑤′2
𝑑𝑠𝑑𝑠

𝑠

0

𝑙

𝑠
]

′

−
1

2
𝑚 [𝑤′ 𝜕2

𝜕𝑡2 ∫ 𝑤′2
𝑑𝑠

𝐿

0
] + (𝜌𝐴 + 𝛿[𝑠 − (𝐿 − 𝜀)]. 𝑚)𝑦̈𝑔𝑣 = 0 
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Figure 12: A schematic of the cantilever beam under consideration [29]. 

Substituting initial boundary conditions and simplifying the equation to use an approximate solution 

of the assumed equation, which was derived as: 

(27)                                                 𝑣(𝑥, 𝑡) = ∑ ∅𝑛(𝑥)𝑧𝑛(𝜏)𝑛   

Where;  ∅𝑛 is the shape function of the nth linear mode, and 𝑧𝑛 is the time modulation of the nth mode. 

Then the governed equation for undamped linear free vibration under axial loading is governed by:  

(28)                     𝑣̈ + 𝑣′′′ +
𝜌𝐴𝑔𝐿3

𝐸𝐼
sin′(𝛼)[(1 − 𝑥) 𝑣′] +

𝑚𝑔𝐿2

𝐸𝐼
 sin(𝛼) . 𝑣′′ = 0 

Then, using a Galerkin method (equation 25) to acquire an ordinary differential equation form of a 

specified partial differential equation for an approximate solution. the truncated displacement function 

for the first mode becomes: 

(29)                                                           𝑣 =  ∅(𝑥)𝑧(𝜏) 

The beam ordinary differential equation was obtained as: 

(30) ℎ1𝑧̈ + 𝜇ℎ1𝑧̇ + (ℎ2 + ℎ10)𝑧 + ℎ5𝑧3 − ℎ11𝑧
𝜕2

𝜕𝜏2
(𝑧2) − ℎ12Ω𝑜

2 sin(Ω𝑜𝜏) cos(𝛼) −

                   𝑧. ℎ13Ω𝑜
2 sin(Ω𝑜𝜏) sin(𝛼) = 0 
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Figure 13: Variation of the steady-state amplitude ratio with the non-linearity coefficient for various 

orientation angles: (𝑎) 𝑦𝑔  =  0.00025 𝑚, 𝐺 = 1, 𝑐 =  0.08, 𝑟 =  0; (𝑏) 𝑦𝑔  =  0.03 𝑚, 𝐺 = 1, 𝑐 =

 0.08, 𝑟 = 0 [30] 

 

Figure 14.  Nonlinear frequency of beam for varying slenderness ratios [27] 

This approach is pragmatic and effective for analyzing the system's behavior in actual environments. 

The efficacy of the Galerkin technique extends to actual engineering applications, where it assists in 

recognizing probable structural problems and improving the efficiency of materials employed in 

design. The studies by [4,1] validate that it is a useful instrument for identifying and forecasting 

dynamic activities in practical surroundings. The results from [3, 5, 24, 25] show that these studies 

help engineers and scientists to detect damage by finding cracks or weaknesses before failure. Improve 

design for safer and more efficient materials that can handle vibrations. Predict behavior and 

understand how structures react under different circumstances. Substituting into the governing 

equation results in a system of interconnected ordinary differential equations that may be more readily 

assessed numerically. When substituted, the problem becomes a system of coupled ordinary 

differential equations that can be analyzed numerically with much less difficulty than the original 

system while still capturing the primary dynamics of the problem. Although it simplifies complicated 

nonlinear differential equations to ordinary differential equations (ODEs), to address these issues, 

researchers have devised meshless Galerkin systems [14]. For complex geometry, these substitutes 

improve computing performance and remove the need for advanced meshing. This approach uses 

generalised coordinates and mode expansions, hence mistakes in higher-order approximations could 

still happen. Accessing systems that are highly complex or possess intricate boundary conditions can 

be problematic, even if they function effectively. Studies, like those by [17], indicate that the Galerkin 
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method may struggle with substantial nonlinearities or when the actual mode shapes significantly 

diverge from the expected trial functions. Researchers have developed meshless Galerkin algorithms 

to tackle these challenges [14]. These solutions eliminate the necessity for intricate meshing and 

enhance computational efficiency for complex geometry. This method employs generalised 

coordinates and mode expansions, which may cause errors in higher-order approximations, even so. 

Although the approach fairly effectively captures the primary dynamics, studies such as [13, 17] reveal 

that it cannot be able to manage strong nonlinearity or complex boundary conditions. As shown in 

[17], the choice of trial functions mostly defines the approximative efficacy of the Galerkin technique. 

When the real mode forms quite differently from the anticipated forms, this reliance on preset forms 

could cause convergence problems. Furthermore, the efficiency of the method in practical applications 

such as nonlinear vibrations of airplane wings [17] emphasises the need to couple with modern 

numerical techniques as Runge-Kutta, for best accuracy. Regardless of these challenges, concepts such 

as meshless Galerkin techniques [14]  remove the necessity for meshing, therefore overcoming issues 

with complex geometry and hence increasing computational speed. Good forecasts and stability, on 

the other hand, depend on combining the Galerkin approach with additional computing methods in 

cases with substantial nonlinearity or dynamic fluctuations. 

 

Figure 15: Chaotic Vibration Behavior When the System Is Subjected to Certain Excitation 

Parameters (0: 5 ≤  𝑝21  ≤  1) [27] 
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As can be seen in Figure 13, the increase of the 𝛼 in direct excitation reduces the performance of non-

linearity coefficients on the decrease of the amplitude ratio. They concluded that the steady-state 

amplitudes diminish because of the non-linearity in both directly and parametrically excited systems. 

Nevertheless, the distinction of the orientation angle affects the performance of the non-linearity in the 

decrease of the amplitudes. 

4. Discussion and Comparison  

The complexities inherent in modelling nonlinear vibrations of beam-like structures, such as cantilever 

beams and plates, necessitate the application of sophisticated analytical and numerical methods 

capable of capturing the intricate behaviors induced by geometric and material nonlinearities. Among 

the prominent approaches are the Lindstedt-Poincaré perturbation method and the Galerkin technique, 

each exhibiting distinct advantages tailored to different regimes of nonlinearity. 

4.1 Lindstedt-Poincaré Method:  

This perturbation strategy leverages series expansions in a small parameter associated with the 

nonlinear amplitude or nonlinearity strength. It effectively transforms the nonlinear differential 

equations into hierarchically linearized forms, allowing rapid convergence and offering high 

computational efficiency. As evidenced in Figures 6 and 13, the method accurately predicts the 

variation of resonance frequencies and amplitude ratios as functions of nonlinearity coefficients and 

slenderness ratios. Particularly, Figure 13 illustrates how nonlinear frequencies evolve with changing 

slenderness ratios, with the method capturing shifts in natural frequencies and dynamic response 

characteristics. Similarly, Figure 12 demonstrates the dependence of amplitude ratios on the 

nonlinearity coefficient across various orientations. These results validate the method's proficiency in 

elucidating modest nonlinear effects but highlight its limitations in strongly nonlinear regimes where 

higher-order terms become significant.  

4.2 Galerkin Method:  

Conversely, the Galerkin approach provides a highly flexible, semi-analytical, and numerical 

framework suitable for dealing with large displacements, complex boundary conditions, and strong 

nonlinearities. By employing trial functions, often orthogonal polynomials or trigonometric functions, 

this technique reduces the governing equations to a set of coupled nonlinear algebraic equations. 

Figures 14 and 15, effectively visualize the detailed nonlinear dynamic behaviors, including the 

frequency response of composite blades at various rotational velocities and the variation of the steady-

state amplitude ratio across different nonlinearity coefficients. Figure 14, in particular, depicts the 

nonlinear movement of a composite blade as the system’s natural frequency shifts with increasing 

rotational speed, exemplifying the method’s capability in simulating real-world complex vibrational 

phenomena. Moreover, Figures demonstrate the Galerkin method's accuracy in capturing mode 

coupling and bifurcation behavior under dynamic loads, crucial for structural integrity assessments. 

4.3 Hybrid and Multi-Scale Techniques:  

The integration of multiple-scales perturbation techniques with the Galerkin method, as discussed in, 

enhances the capacity to analyze resonance phenomena and complex modal interactions over extended 

time domains. Figure 2 depicts a comparison between frequency response curves obtained from 

analytical solutions, i.e., the Multiple-Scales Lindstedt-Poincaré (MSLP) approach, and numerical 

simulations using the fourth-order Runge-Kutta method. But as deflections increase, there are 

deviations in the Multiple-Scales (MS) method responses, which indicate the limitations of linear 

approximations. There is also added complexity due to variations in nonlinearity coefficients, as shown 

in Figure 3, where frequency response and large amplitude variations are observed. These variations 
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mean that as nonlinear effects intensify, traditional methods can be inadequate, justifying the use of 

advanced analytical methods such as the MSLP approach to accurately capture system behavior. In 

addition, figures such as those in (not explicitly provided but conceptually similar to Figures 12 and 

13) show the amplitude modulation and frequency shifts characteristic of nonlinear energy transfer, 

underscoring the advantages of hybrid methodologies in handling systems with moderate to strong 

nonlinearities. 

4.4 Implications for Engineering Practice:  

In high-stakes engineering applications—such as the vibrational analysis of aircraft wings subjected 

to fluctuating aerodynamic loads or the assessment of structural integrity in flexible robotic arms, the 

choice and combination of these mathematical tools are critical. Figures 6, 12, 13, and 14 collectively 

depict the progression from simplified approximate solutions to detailed numerical simulations, 

illustrating the importance of matching the method to the specific nonlinearity level and geometry of 

the problem. The figures emphasize that while the Lindstedt-Poincaré method excels in swift, first-

order frequency prediction for systems exhibiting weak nonlinearities, the Galerkin method provides 

the detailed spatial and modal resolution necessary for designing resilient and failure-resistant 

structures. Continuous advancements in hybrid methodologies and computational capabilities promise 

to further bridge the gap between analytical simplicity and numerical precision, thus propelling the 

field toward high-fidelity predictive modelling essential for modern structural engineering. 

Table 1: Comparative Performance of Approximate Methods in Literature 

Aspect 

 

Lindstedt-Poincaré 

Method 
 

 

Galerkin Method 

Strengths 

Effective for fixing issues 

with small nonlinear effects. 

 

Very accurate for complex 

vibration problems in beams and 

plates. 

Methods with small 

vibrations or internal 

resonances benefit from 

understanding how little 

changes influence the 

system. 

 

It effectively supports significant 

motions along with heavy loads, 

streamlining complex equations 

for more straightforward 

resolution. 

 

Weaknesses 

and limitations 

It's not very accurate for big 

changes or strong non-linear 

impacts. 

 

It is essential to select functions 

judiciously to conform to the 

constraints of the situation. 

 

Faces difficulties with 

systems that have strong 

connections across modes 

 

May need considerable time for 

highly intricate systems. 

 

ideal 

applications 

 

Systems with small 

vibrations or minor 

nonlinearities (e.g., small 

beam deflections) 

Systems with large movements or 

heavy loads (e.g., airplane wings, 

rotating blades). 

Accuracy and 

Cost 

High (≤5% error). It costs 

less because it uses simple 

math methods. Multiple 

Scales (MS) is very accurate 

for small changes, but not as 

Higher cost because it requires 

solving more complex equations, 

but it is highly accurate (≤2%) for 

complex systems, especially with 

the right setup. 
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accurate for big moves as 

MSLP (Hybrid) (≤1%). 
 

Computational 

Efficiency 
Very High (Low iteration Medium 

Adaptability in 

Managing The 

absence of 

Linearity 

 

This method works great for 

finding small nonlinearities 

in the way a system behaves, 

but it has trouble with bigger 

or more important changes, 

like significant deflections or 

vibration shifts. 

 

Even though it requires more 

effort and time, the Galerkin 

approach is extremely effective 

when working with complex, 

nonlinear systems. This 

demonstrates how adaptable it is 

at recording complex behavior in 

many contexts. 

 

Sources: [6], [9], [11], [13], [17], [22], [28]  

5. Conclusions 

Non-linear beam vibration under time-varying boundary conditions may happen when the boundaries 

of a beam are constrained to undergo displacements in time variation. A beam may experience this in 

complex structures where a structural element interfaces with another, or when the beam itself is 

subjected to time-varying external pressure. The nonlinear vibration arises from the immense 

amplitudes in the beam that may result in extreme variations of the deflection and response of the 

beam. The summary of the review is presented below: 

 The Lindstedt-Poincaré method offers efficient and accurate approximations for small to 

moderate nonlinearities, making it highly suitable for initial assessments and dynamic response 

estimations. 

 The Galerkin approach demonstrates greater accuracy in modeling large displacements, dynamic 

stresses, and intricate boundary conditions, enhancing reliability in detailed structural analyses. 

 The hybridization of these methods reduces computational complexity and processing time, 

enabling practical solutions for complex nonlinear systems without sacrificing accuracy. 

 Both techniques are adaptable to various real-world scenarios, including aircraft wings, flexible 

robots, and beams with time-varying conditions, illustrating their robustness and versatility. 

 Integrating Lindstedt-Poincaré and Galerkin methods facilitates efficient, high-fidelity 

modelling of nonlinear vibrations, ensuring precise predictions essential for the safe and optimal 

design of modern structures. 

5.1 Future Directions and Applications: 

Combining the Lindstedt-Poincaré and Galerkin methods provides a useful method to address difficult 

nonlinear vibration problems in various types of real-world constructions. The Lindstedt-Poincaré 

method provides efficient and approximate solutions for small to moderate nonlinearities, especially. 

Conversely, the Galerkin approach performs best with more complex systems with big displacements 

and dynamic loads, therefore providing relatively precise results. The simulation of real engineering 

structures like aerodynamic wings, elastic robots, and time-varying loaded and constrained structures 

can be greatly improved by this supplementing power of the methods. 
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5.2 Limitations of the Existing Methods:  

Although both methods consider nonlinear vibrations, they might not be suitable for quite random or 

rather nonlinear signals. Researchers should concentrate on improving present methods or creating 

blended solutions that are more suitable for these kinds of problems going forward.  

5.3 Potential for Hybrid Methods:   

Combining the Galerkin approach with perturbation approaches such as the Lindstedt-Poincaré 

method could provide a possible avenue for more exact and computationally efficient solutions for 

nonlinear vibrations, especially in highly dynamic or complicated systems. This approach may allow 

for more effective capturing of subtle events in complex structural systems.  
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