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1. Introduction

A mathematical model serves as a precise mathematical depiction of real-world phenomena,
employing symbols, equations, and formulae to encapsulate intricate processes. Given the substantial
global health impact, it is imperative to gain a comprehensive understanding of and the ability to
predict the behavior of emerging coronaviruses, such as COVID-19. Many researchers in the
mathematical, computational, clinical, and investigative fields have worked to model, predict, treat,
and mitigate the effects of this disease. The scientific community can, however, always do better. The
relevance of mathematical and computational models for predicting the dynamics of new coronavirus
diseases has increased in recent years, prompting a plethora of publications in this area. World health
officials were alarmed when the COVID-19 epidemic broke out in the Chinese city of Wuhan in the
province of Hubei in the latter half of 2019. In the year that followed, the epidemic had reached nearly
every corner of the world [1].

In Wuhan, China, there was a brief period characterized by a succession of perplexing health problems,
including unexplained instances of coughing, pneumonia, difficulty breathing, exhaustion, and high
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body temperature. The occurrence of these mysterious diseases led to a sequence of activities, such as
the shutdown of establishments, educational institutions, and markets, as well as the imposition of
regulations on social engagements, curfews, lockdowns, and constraints on gatherings, among other
interventions [2]. Nigeria has been affected by the repercussions of the COVID-19 pandemic. The first
instance of COVID-19 was officially verified in Lagos State, situated in the southern region of Nigeria,
on February 27, 2020. The outbreak in the country started when an Italian individual landed in Nigeria
on February 24, 2020. This person sought medical assistance on February 26, 2020, marking the first
known case in Nigeria (refer to Fig. 1) [3].

According to the arrival of the COVID-19 pandemic in Nigeria, the national government, as well as
several state authorities, established distinct medical organizations and isolation centers as proactive
measures to combat and manage the transmission of the virus. The Nigerian Center for Disease Control
(NCDC), a governmental entity, disseminated essential public health information to the Nigerian
people. This guide included details on symptom recognition, the distribution of vital information, and
methods for preventing the disease. The NCDC created extensive national and sub-national
organizations of health service professionals, enhancing the country’s ability to effectively conduct
contact surveillance and handle cases. Also, the NCDC did a lot of work to make sure that research
labs could handle more work so that they could step up their pandemic diagnostic game. The goal of
these concerted actions was to make Nigeria more resilient in the face of the unprecedented health
calamity that COVID-19 posed. Since the COVID-19 outbreak started, mathematicians have been
increasingly used by researchers to help better grasp it. Using such models, one may investigate the
dynamics of the epidemic's progress, the virus's spread, its impacts on individuals, control and
preventive strategies, and the effectiveness of these actions. New investigations in this area, as shown
in the references [4], have significantly increased our understanding of the subject. The features and
distribution of COVID-19 throughout Lagos, Nigeria, were examined in a research by Okuonghae and
Omame [5]. At the same time, Roseline and colleagues [6] estimated the pandemic-related death toll
in Nigeria using linear regression, a statistical approach. Adegboye and colleagues [7] also looked at
how COVID-19 spread from its initial transmission to Nigeria. Ajisegiri et al. [8] conducted a
comprehensive investigation on the COVID-19 epidemic in Nigeria. Researchers from several
disciplines have conducted crucial research into prospective therapies and preventive measures to
alleviate the impact of the epidemic, and the results have shown promise. However, it is crucial to
conduct a thorough study of the most recent models and deliver a reasonable and complete appraisal
of the present circumstances.

Despite the numerous modeling approaches suggested for predicting the progression of new
coronavirus infections, it is evident that this area needs development. The findings are anticipated to
be of superior quality if the models are formulated based on mass action laws, consist of reaction rate
constants, and evaluate the sensitivity of every state to the model parameters [9]. The complexity
involved in solving systems of ordinary differential equations often results in a lack of exact analytical
solutions for most of these issues. Moreover, these obstacles are exacerbated by the coexistence of
several temporal scales that develop concurrently inside these issues, despite the numerous
documented methodologies for reducing models aimed at minimizing complexity and deriving
analytical solutions [10, 11], but numerical techniques are required for solving such problems.
Consequently, several scholars have shown a strong interest in investigating these complexities. As a
result, a wide range of numerical approaches have developed throughout time. The techniques used in
this context include the techniques Euler method, the Runge-Kutta scheme, the Implicit-Explicit
(IMEX) Runge-Kutta scheme, the Singly Diagonally Implicit Runge-Kutta (SDIRK) approaches, and
the Semi-Implicit and Explicit Runge-Kutta approaches. The Implicit-Explicit Runge-Kutta scheme
(IMEX-RK (4,5,5)) is a popular method for solving differential equation systems (1). This method is
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significant because practical data shows it solves difficult problems. References [12, 13] provide
further information on these approaches and their practical applications.

800

700

o

Figure 1: Confirmed COVID-19 Cases-Nigeria 2020 (3).
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2. Mathematical Modeling for the COVID-19 Disease

This study examines a theoretical framework for comprehending the transmission rates of the
coronavirus (COVID-19) illness, grounded in basic principles. Propose a dynamic model to depict the
progression of the human population in relation to the COVID-19 pandemic. Define N(t) as the
cumulative human population at a given time t. Individuals can be classified into six distinct groups:
susceptible individuals (S(t)), exposed individuals (E(t)), asymptotically infected individuals
(I1,4(t)), symptomatic infected individuals (I5(t)), individuals in quarantine (Q(t)), and individuals
who have recovered or been removed from COVID-19 (R(t)). By using this classification, we can
represent the overall population at a certain moment as the cumulative sum of these six classifications:
N(t) =S{t)+E(t)+ Q(t) + 14(t) + Is(t) + R(t). This formulation enables us to monitor and study
the population's dynamics within the framework of the COVID-19 pandemic, including the different
phases of infection and recovery. The natural birth rate and mortality rate for humans are represented
by r; and r,, respectively. Individuals who are susceptible (S) may transition to the infected condition
(E) after being adequately exposed at a rate of 73. Alternatively, they may transfer to the quarantined
class at a rate of r,. There are three potential outcomes for exposed people (E): they may change to
the quarantined class (Q) at a rate of r5, become infected asymptomatically (I,) at a rate of 1, or get
infected symptomatically (Is) at a rate of 1. Individuals in the quarantined state (Q) may also be
verified as infectious, either with symptoms (Ig) or without symptoms (I4), at rates of rg and 7y,
respectively. The recovery rate for persons who are infected but show no symptoms (I4) is denoted
as 17,, whereas the recovery rate for those who are infected and show symptoms (Is) is denoted as
111. Natural mortality, represented by the parameter r,, may cause a decline in the population of each
of these groups. Additionally, the population of persons infected with symptoms (Is) can be reduced
by death caused by the sickness at a specified rate. The infected class of people without symptoms (1)
does not include mortality because of the illness. This model fails to include the possibility of
reinfection after the process of healing. Figure 2 displays the schematic design depicting the
transmission of COVID-19. Table 1 contains an extensive compilation of biologically significant
parameters and their respective values. The model's system of differential equations is expressed in
system (1).
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Figure 2: The model examines the interactions between individuals and the transmission rates of the
coronavirus disease (COVID-19) [3].

ds(t)
D =1~ (a4 S ~ RS WEW,
dE(t)
T r3S(E(t) — (5 + 12 + 16 + 1,)E(D),
()
(€] T 13 S(t) + 5E(t) — (1 + 13 +19)Q(1),
dly(t)
T 7 E() +15Q(t) — (rz + 112) 14 (1),
dls(t)
dr 1eE(t) +15Q(t) — (1o + 15 + 111 I5(2),
dR(t)
ar 11204 (t) + 11115(t) — 12 R(2).
With initial conditions:
2) (5(0), E(0), Q(0), 1,(0), I5(0), R(0)) = (0.5,0.2,0.1,0.2,0.1,0).

Table 1: Set of parameters with their biological meanings [3].

Parameter | Description Values
n Recruitment (natality) rate 0.02537
Ty Natural mortality rate 0.0106
73 The contact rate between individuals who are susceptible to 0.0805

a particular infection and those who have been exposed to it
plays a crucial role in the transmission dynamics of the

disease.
74 Transfer rate from susceptible individuals to quarantine 0.0002
Tg The rate of exposed people being transferred to quarantine 2.0138e — 4
Te Rate of transition from the exposed population to the 0.4478

symptomatic infected population.

Ty The transition rate from the group of individuals who have 0.0668

been exposed to the class of asymptomatic individuals.
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Tg The transition rate from the quarantined population to the 3.2084e — 4
symptomatic infected category.

Tg The ratio of individuals placed in quarantine to those who 0.0101
are asymptomatic and infected is a crucial metric in

assessing the effectiveness of public health measures.
T10 Coronavirus-related mortality rate in the class of those who 1.6728e — 5
are symptomatic and infected.

111 Recovery rate of those with symptoms of infection. 1.6728e — 5

T12 Recovery rate of asymptomatic infected individuals 5.7341e -5

3. Existing and Uniqueness Solution for the System

To apply the numerical methods to any system of differential equations, first, we have to show that
this system has a unique solution. Here we prove that the solution of system (1) exists and is also
unique based on the Picard-Lindelof theorem [14], The Picard-Lindel6The theorem states that if the
right-hand side of an ODE system is Lipschitz continuous and continuous with respect to the dependent
variables, then there exists a unique solution to the initial value problem. Consider the system of DEQ
(1) with initial conditions given in (2). Let us define the vector of components and the vector field
F(C) represents the system (1):

E(t) 13SE — (rs + 1, + 15 + 15)E
| @) | 1S+ 15E — (p+13+19)Q |

_ — |
@ = L®) FO= E +15Q — (1 + 112)Iy .
Is(t) T6E +13Q — (110 + 15 + 1111
R(t) T2l + 11ls — R

S(t) rn —(y+1)S —nrSE \‘

Based on the definition of a polynomial function, each component of F(C) is a polynomial in
S,E,Q,I4, I, and R. And polynomials are continuous functions. Therefore, F(C) is continuous. In
order to verify Lipschitz continuity, it is necessary to demonstrate the existence of a constant L that is
sufficient for every pair of vectors C; and C,,

IF(C1) — F(COIl < LIIC, — Gl
Let us define the Jacobian matrix for F(C) as follows:
0f O Ofi Ofi O Ofy
oS OE aQ al, ol; oR
of, 0f, 0f; 0f, 0f, 0f,
oS 9E 9Q al, 9l; OR
dfs; 0fs 0fs 0fs 0f; Ofs
oS 9E 9Q al, dl; OR
Of Of Ofi O O Ofi
S OE aQ al, ol; OR
oS OE aQ al, ol; oR
dfe 0fs 0fs 0fs 0fs Ofs
[0S 9E 0Q al, dl; OR|

3) Jacobian(F) =
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14 — 1, —13E —138 0 0 0 0

r3E 73S —Ts—T, —Te—Ty 0 0 0 0

. _ 7y Ts T —Tg—T9 0 0 0
(4)  Jacobian (F) = | 0 - Ty —T— T2 0 0 |
| 0 Te g 0 —Tp—1—7r1 0 |
l 0 0 0 T12 1 _rZJ

Next, we find the Lipschitz constant L by applying the following formula:

Z—f) for i =1,2,...6.

Cj

L = max (216-:1

By definition, we have S,E > 0, then for i = 1, the part of f is |—(ry + 13) —13E |+ |-13S| + 0 +
0+0+0=r,+1r,+1r3E +1r3S,then f; =1, + 1, + 3(E + S), in the same way for i = 2,3,4,5 we
conclude that (f5, f3, fa, fo, fe) = (RE +13S+ (g + 1y +1rg + 1), 1+ 15+ 1y + 15+ 19,75 + 19 +
Ty + 7,1 +1g+ 1+ 1y +1y, 12 + 191 +12), then, the Lipschitz constant is L =
max(f1, f2, f3, fa, f5, f6)- And by substituting the values of S and E , from equation (2), L becomes

L=max(r, + (0.7)r;3 + 13,1 + (0.3 + 15+ 15+ 1,1+ 1, +15+15+19, 15 +15+ 19
+ 1,1+ 1+ 1510+ 111, T2 F 1 FT2).

The partial derivatives are bounded because all the r; values are constant, as seen in Table 1. Thus,
the existence of this constant L guarantees that the Lipschitz condition is met. We proved that F(C)
is continuous and satisfies the Lipschitz condition, then by Picard-Lindel6f theorem, the solution of
the system (1) exists, and it is unique t = 0.

4. Methods and Qualitative Analysis

Systems of ordinary differential equations are used to mathematically simulate a variety of scientific
and technical problems, and there are several techniques to study the dynamic behavior of state
variables. In this paper, we work with three different techniques for the given model. The main concept
of IMEXRK is to divide it into two methods: implicit-explicit Runge-Kutta, with the linear component
being treated by an implicit scheme and the nonlinear term being treated by an explicit scheme. For
more information, see [12, 15]. To make progress, we return to system (1) and concentrate on non-
linear systems of ordinary differential equations, applying the concepts detailed in the preceding
sections.

[ 71— (1 +712)S(0) ] [ —13S(E(t)
—(rg+ 1+ 15 +17)E(L) r3S()E(t)
F(t,x(t)) — 1,S(t) + s E(t) — (1 + 15 +19)Q(¢) , G(t, x(t)) —

17 E(t) + 15Q(£) — (12 + 112) 14 (2)
TE(t) +15Q(t) — (ryo + 12 + 111) s (2)
L1120, (8) + 111 15(2) — 1 R(E)

cocooco

Returning to (1) and substituting earlier equations, this results in:

5) % = F(t,x(t)) + G(t, x(t)),

where y(t) = [S(t) E(£) Q()1,4(t) Is(t) R(£)]. While the non-stiff portion G (¢, x(t)) is addressed
using an explicit Runge-Kutta (ERK), the solution of the stiff component F(¢, x(t)) is produced by
using a diagonally implicit Runge-Kutta (DIRK) methodology. In this context, the basis of an implicit-
explicit Runge-Kutta (s-stage ERK) method is formed by both the s-stage ERK and DIRK procedures
using comparable weighting coefficients, indicated as i, where i = 1,2, ..., s.
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¢ ay 0 0 o 0 é 0 0 0 e 0
Cy azq az, 0 0 62 &21 0 0 0
C3 az; Az azs3 0 3 s, ds; 0 0
CS sy 42Y) Qg3 Ass CS Asy Aso Qg3 0

b, b, bs b, by b, b by

(b)" | oy

The symbols [I] and [E] are employed to denote the implicit along explicit elements, respectively,
inside the sentence. The term y™*1, which is estimated using the following method, has been defined
as:

S
yrtl = yn 4 Atz b;k; ,where

i i-1
ki =F t+At,yn+AtZaUk] + G t+At,yn+AtZdUkJ ,1= 1,2,...,5.
j=1 j=1

Table 2 shows the coefficients of our IMEX-RK (4,5,5) technique, which is a 5-stage IERK approach
with fourth-order accuracy.

Table 2: Fourth-order implicit-explicit Runge-Kutta technique coefficients IMEX-RK (4,5,5).

o 1/4 0 0 0
c, | 0.34114705729739 1/4 0 0
c; | 0.80458720789763  —0.07095262154540 1/4 0 0
c, | —0.52932607329103  1.15137638494253  —0.80248263237803 1/4 0

cs | 0.11933093090075 0.55125531344927  —0.1216872844994 0.20110104014943  1/4
0.11933093090075 0.55125531344927  —0.1216872844994 0.20110104014943  1/4

and
& 0 0 0 0 0
¢, | 0.39098372452428 0 0 0 0
¢; | 1.09436646160460 0.33181504274704 0 0 0
¢y | 0.14631668003312 0.69488738277516  0.46893381306619 0 0
Cs | —1.33389883143642 2.90509214801204 —1.06511748457024 0.27210900509137 O
0.11933093090075 0.55125531344927  —0.1216872844994 0.20110104014943 1/4

5. Analysis of COVID-19 Disease Systems

At the levels of the variables that cause the rates of change to become zero, we say that the system is
in equilibrium. These coordinates stand for a steady condition when the system does not change. Points
of equilibrium in our COVID-19 illness model would be when there is no longer any change in the
numbers of people in each compartment. The existence of many equilibrium points might lead to
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various consequences for disease dynamics. To determine the equilibrium points, we may solve the
system (1) by setting every rate of change equation to zero, then calculating for the relevant variables.
ds(t) _ dE(t) _ dQ(t) _ d[A(t) _ d[S(t) _ dR(t) _

dt ~ dt — dt ~ dt dt dt
We calculated the values of variables S, E, Q, I4, I, and R by equating each component to zero and

replacing parameters from Table 1. This identified two equilibrium points:

E; = (2.3491,0,2.2350e — 2,2.1181e — 2,6.7436e — 4,1.1564e — 4) and
E, = (6.5267,—8.5875e — 2,6.1275e — 2,—4.8019¢ — 1,—3.6145, —8.3017e — 3).

A large susceptible population (S) and low exposed (E') and quarantined (Q) populations are predicted
at the equilibrium point (E;). Small numbers of asymptomatic (I4) and symptomatic (I5) infected
people exist. The recovered population (R) is extremely restricted, indicating a managed sickness
where most individuals are susceptible. E, 14, Is and R are negative at E,, the second equilibrium point.
Negative numbers are not physically meaningful and may indicate model or calculation errors.
Linearization is a useful approach for gaining a deeper understanding of systems around equilibrium
points. The eigenvalues and Jacobian matrix may be obtained for every equilibrium point.

The eigenvalues of E; were computed, and the resulting values were inserted into the Jacobian matrix
(4). The given numeric values

(A4, Ay, A3, A4,45,46) = (—0.0106,—0.0210,—0.0106,—0.0107,—-0.3363,—0.0108),

if the eigenvalues are negative, then E; is considered stable. This stability means the illness may be
treated or prevented, possibly by isolation until a vaccine is available. We plot 2D and 3D phase
portraits from various viewpoints to analyze the behavior of a system (1). The phase image illustrates
the impact of changes in population compartments on others, hence displaying the dynamics of the
system. Comparing many groups allows researchers to get insight into the stability and behavior of the
system under different conditions. In epidemiology, this knowledge is fundamental for creating
efficient treatments and control techniques. We determine the stability behavior for these components
by plotting a 2D for the number of exposed vs susceptible, susceptible vs quarantined, quarantined vs
exposed, and asymptomatic vs symptomatic infected persons. And we plot a 3D since the 3D phase
portrait offers a thorough understanding of the dynamic behavior of the epidemiological system. The
stability and long-term behavior of the system may be understood by examining the vector field and
trajectories, which can assist in guiding the development of disease control measures. First, we plot
the group of ( S, E, and Q ) and then ( I4, Is and R) for analyzing the relationship between them, so we
will discuss more about it in section 7.

6. Sensitivity Analysis

One of the best ways to better comprehend the dynamics of the biological system and investigate the
mathematical model's output is sensitivity analysis via the mass action law. The sensitivity analysis
method formulation with m reversible reactions and n components are simply presented below:

n

Rl &
L

(6) Zaijcj 2 Zﬁijcj, i=12..,m,
Rf’ j=1

j=1
The elements of C;, where j ranges from 1 to n, are represented by «;; and f;;, which are integers
that are non-negative. The reactions, both forward as well as backward, are always occurring with

Rif > 0 and Rf’ = 0. The response rates may be determined by using the mass action formula.

n n
ij Bij
(7 ri=ﬂe{| |c]f"f(t)—3e§’| |cj 7).
j=1 j=1
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Therefore, the system of DEqs is shown as follows

dc
€)) P Z YiTi,
ieJcR
Where y; = [)’L-J- - a;j, fori =1,2,..,mandj = 1,2, ...,n. Equation (8) may be expressed as follows:
9 < _, C,R)
( ) dt - J 4 4

Where C € R™ and R € R™. The vector of elements serves as the inputs as well as the outcomes of
the model [16, 17]. Moreover, local sensitivity refers to the variation in the model variables Cj, j =
1,2, ..., n with respect to the parameters of the model Ry p=12,..,m. The sensitivity model
formula for each variable with respect to the parameters is often written as follows:
(10) Sip = ;% _ i SR +AR) =~ GRy)

p  ARpo0 AR,
Equation (5.5) could be computed by the finite difference approach in the following way.
1) 5,y = aajij _G(®R, + AZZJ) —GRp)

P P
In essence, direct analysis of sensitivity is conducted to formulate the sensitivity formula, which
requires solving DEgs for sensitivity coefficients.

w2 e 9 (24) 2 (%) 0 (hew)

ot 0t\dRr,) 0R,\0dt) OR,\’ T
Thus, the Jacobian matrix is applied in the local sensitivity expression in the following ways:
(13) S=Lg,+1.8 p=12,..,m,

The matrices S, LR;: and J are given below.

dC, 044 ¢, 04, a4,
o, i, e a6 o |
oc, 0¢, 06 0t oty |
S=|0R, | Lr,=|0R, |.and J=|9¢c, 0C, ac, |
ac, ot 0L, e, 0t
IR, IR, ac, ac, = ac,

The initial conditions for the system (5.8) are computed by entering parameters R, and initial
conditions for output components C;. Readers might find further information in [17, 18]. The
Symbiology Toolbox in MATLAB allows for the computation of local sensitivity values in equation
(13) using three distinct methods: complete normalization, half normalization, and non-normalization.
For complex modeling situations, such as the coronavirus, it is essential to thoroughly and precisely
prioritize sensitivity analysis. Consequently, we have a look at the coronavirus equations from system
(1) and determine the local sensitivity of the model compartments to the model parameters in three
separate cases. These results are shown in Figures (4-6).

7. Numerical Results

The purpose of this part is to demonstrate the usefulness and effectiveness of a certain method by
implementing a numerical solution using MATLAB. In this section, we use two different computation
techniques: the Implicit-Explicit Runge-Kutta (IMEX-RK) approach has a setup of (4, 5, 5), and the
conventional Explicit Runge-Kutta (ERK) approach. The purpose of this part is to demonstrate the
usefulness and effectiveness of a certain method by implementing a numerical solution using
MATLAB. This section will employ two distinct computational methods: the Implicit-Explicit Runge-
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Kutta (IMEX-RK) approach, characterized by a configuration of (4, 5, 5), and the traditional Explicit
Runge-Kutta (ERK) methodology. The tactics will be used to tackle the system delineated in equation
(1). In this context, the numbers 4 and 5 represent the numerical scheme's order and the number of
steps for both implicit and explicit procedures, respectively. The starting populations, as well as

parameter data in this research, are sourced through the health organization with Nigerian centers of
control of illnesses as documented in [3].
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Figure 3: Numerical approximation solutions for the COVID-19 model system (1) in Nigeria using
IMEX-RK (4,5,5) and classical Runge-Kutta. (a) Describes the variety of populations that are
susceptible (S), (b) populations that were exposed (E), (c) quarantined groups (Q), (d)

asymptomatically infected groups (1), (e) symptomatically infected populations (I), and (f)
recovered groups of people (R).

Table 3: Comparison of Classical Runge-Kutta and IMEX-RK (4, 5, 5) Fourth-Order Techniques.

] Classical Runge-Kutta of order four IMEX-RK (4,5,5)
(vTvleeri) h =001 h=1
S E Q S E Q
0 0.5 0.2 0.1 0.5 0.2 0.1
20 0.844549 | 1.611131 e-05 | 6.796845 ¢-02 | 0.844477 | 2.359809 ¢-05 | 6.797030 e-02
40 1.136823 | 2.187407 e-09 | 4.792545e-02 | 1.136760 | 4.492074 ¢-09 | 4.792754 ¢-02
60 1.372321 | 4.534481 e-13 | 3.561369 e-02 | 1.372267 | 1.263021 e-12 | 3.561558 e-02
80 1.562069 | 1.321962¢-16 | 2.821411 ¢-02 | 1.562023 | 4.869289 ¢-16 | 2.821564 ¢-02
100 1.714956 | 5.072652 ¢-20 | 2.390735¢-02 | 1.714917 | 2.423082 ¢-19 | 2.390851 e-02
120 1.838143 | 2.428817 ¢-23 | 2.152444 ¢-02 | 1.838110 | 1.481955¢e-22 | 2.152527 ¢-02
140 1.937399 | 1.390020 e-26 | 2.031848 ¢-02 | 1.937371 | 1.070604 e-25 | 2.031904 e-02
160 2.017373 | 9.184695 ¢-30 | 1.981575¢e-02 | 2.017349 | 8.847147 ¢-29 | 1.981612 e-02
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180

2.081810

6.813972 e-33

1.971869 e-02

2.081791

8.148628 e-32

1.971891 e-02

200

2.133730

5.549553 e-36

1.984277 e-02

2.133714

8.191531 e-35

1.984288 e-02

Table 4: Comparison of Classical Runge-Kutta and IMEX-RK (4, 5, 5) Fourth-Order Techniques.

Time Classical Runge-Kutta of order four IMEX-RK (4,5,5)
(week) h =0.01 h =1

I, Ig R I, Ig R

0 0.2 0.1 0 0.2 0.1 0
20 0.199441 0.234744 2.907360 e-04 0.199448 0.234797 2.907026 e-04
40 0.171490 0.190114 4.897543 e-04 0.171497 0.190163 4.897440 e-04
60 0.146037 0.153930 6.110213 e-04 0.146043 0.153970 6.110270 e-04
80 0.123727 0.124622 6.746733 e-04 0.123732 0.124655 6.746895 e-04
100 0.104667 0.100897 6.969194 e-04 0.104671 0.100924 6.969425 e-04
120 | 8.867742 e-02 | 8.169795 e-02 | 6.904617 e-04 | 8.868103 e-02 | 8.171998 e-02 | 6.904889 e-04
140 | 7.544328 ¢-02 | 6.616693 ¢-02 | 6.650216 e-04 | 7.544642 ¢-02 | 6.618493 ¢-02 | 6.650511 e-04
160 | 6.460206 e-02 | 5.360659 e-02 | 6.278741 e-04 | 6.460478 e-02 | 5.362131 e-02 | 6.279044 e-04
180 | 5.579220 e-02 | 4.345094 e-02 | 5.843379 e-04 | 5.579455 e-02 | 4.346297 e-02 | 5.843680 e-04
200 | 4.867884 ¢-02 | 3.524104 ¢-02 | 5.382016 e-04 | 4.868085 ¢-02 | 3.525088 ¢-02 | 5.382307 e-04

8. Discussion and Conclusion

The health care program needs a full understanding of the transmission of infectious diseases for
controlling or preventing them, and to properly understand, we need mathematical modeling and
computational simulations. Theoretical investigation into such models supports biologists in order to
predict model behaviors and identify important parameters of the model. First, we proved that the
solution of system (1) exists and is unique, then we employed the IMEX-RK technique to compute
numerical approximations for the COVID-19 differential equation system, incorporating both stiff and
non-stiff components. The implicit scheme handles the stiff segment, while the explicit scheme
manages the other portion. A key focus of our approach is diminishing iteration count, thereby lowering
the computational burden. The results unequivocally demonstrate the superiority of our method over
the classical Runge-Kutta method in stability and computational efficiency.

Therefore, we have computed approximate solutions for each state of the model using the reported
cases, see Figure 3. These calculations mark a substantial stride forward in pinpointing pivotal
elements within the model and charting the course for prospective enhancements. The computational
outcomes acquired have the potential to bolster global initiatives focused on mitigating the impact of
the ailment on individuals and facilitating the implementation of broader strategies for curbing the
transmission of the coronavirus within communities. Additionally, in our stability analysis, we have
discerned a stable point, signifying that at this juncture, the disease exhibits stability. This finding
underscores the effectiveness of containment measures, such as quarantine or direct vaccination, in
controlling the disease's further dissemination.

Consequently, we have calculated a phase portrait in 2D dimensions for S vs E, S vs Q, E vs Q, and I,
vs , Is which is presented in Figure 4. The plots' red arrows show which way the system is moving in
phase space. And about their behavior, these trajectories imply the existence of equilibrium sites, or
attractors, where the system gradually stabilizes. And the nonlinear character of these correlations
points to intricate interactions between the model's various compartments, which is characteristic in
epidemiological models where a variety of factors influence the transmission of disease. These phase
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portraits show how modifications in one population compartment impact other population
compartments, offering insight into the system's dynamics. To create efficient interventions and control
techniques in epidemiology, researchers must first understand the stability and behavior of the system
under various conditions, which can be accomplished by examining these plots. And the 3D phase
portrait for S, E, and Q together and I, Is and R together presented in Figure 5), shows that the
system's vector field, represented by the red arrows, shows the motion and rate of change of the
variables, and illustrates the way a system changes over time. And the blue curve represents a trajectory
or a solution for the system. This trajectory shows how the variables vary with time, beginning at a
specific initial state. Figure 5 (I) illustrates that while the number of susceptible people decreases the
number of the number of exposed people increases and then stabilizes, meanwhile the number of
individuals from quarantine people are increases. And from the whole 3D phase portrait, it's clear that
the system will eventually stabilize. And Figure 5(II) demonstrates that at first, the number of
asymptomatic infected people rises while that of symptomatic infected people declines. There is a
gradual increase in the number of recovered individuals, suggesting that people progress through
stages of infection to recovery. The trajectory indicates that populations that are asymptomatic,
symptomatic, and recovered eventually lead to stabilization. Understanding the stability and long-term
behavior of the system is essential for comprehending the dynamics of disease progression and
recovery. This can be achieved by evaluating the vector field and trajectories. Public health policies
for controlling transmission and recovery from infectious diseases can benefit from this approach.
Incorporating the principle of local sensitivity analysis, as outlined in equation (13), represents a
pivotal advancement in our quest for further exploration and model refinement. The calculation of
local sensitivity concerning each model compartment in relation to model parameters necessitates the
utilization of the Symbiology Toolbox within MATLAB. We employ three distinct methodologies to
assess the sensitivities of these models: full normalizations, half normalizations, and non-
normalizations, as illustrated in Figures 4-6. Remarkably, these results not only enhance our
comprehension of the model but also enable us to identify the pivotal parameters critical to its
performance. Figure 6 clearly illustrates that the group of parameters {r;, ¢, 7} exhibits the highest
level of sensitivity concerning the dynamics of COVID-19. Particularly, r4 which represents the rate
of transition from the exposed class to symptomatic infected individuals’ class, demonstrates a
remarkably strong sensitivity to the state variable E, representing the population of exposed
individuals. In contrast, the parameters {r,,73,74,7s,73,79, 710,711,712} appear to have a less
pronounced impact on the overall model. Figure 7 provides us with the model parameters
15,73,75,76, 77,18, 19, 10, 711 and 1y, are the least critical, especially 3 is very sensitive for all state
variables, but r; and r, are typically critical to a model, especially 7, is very sensitive to the state
variable @  (Quarantined individuals). Figure 8 also shows that the group
{r3,75,76, 77,78, T9, 10,111, 12} Model parameters are the lowest critical, whilst the set of model
parameters {r;,7,,74} becoming sensitive to the model states, especially r; (Rate of recruiting), it is
very sensitive to the state variable S (Susceptible individuals).

Therefore, employing computational simulations to pinpoint the pivotal parameters of the model under
examination proves to be a highly efficient approach for comprehensively exploring the model, both
in practical and theoretical contexts. Furthermore, this method allows for the formulation of
recommendations aimed at advancing future endeavors in the field of coronavirus prevention,
encompassing vaccination strategies, treatment modalities, and disease control measures.
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Figure 4: The relationship between two important variables is shown in each plot: S vs E, indicating
a sharp decline in those who are exposed while the number of those who are susceptible rises and
then levels off. S vs Q: Shows a decline in those placed under quarantine as the number of
susceptible people rises; the curve is steep at first and then becomes more rounded. E vs Q: Shows a
dramatic increase in those under quarantine as the number of exposed people rises, leveling off at an
equilibrium level. I4 vs Is: Shows a nonlinear relationship in which a rise in asymptomatic people
eventually causes a fall in symptomatic people.
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Figure 5: The 3D phase portrait illustrates the dynamics of infectious disease spread and control
techniques by showing the interactions between: (I) susceptible (S), exposed (E), and quarantined
(Q) individuals in an epidemiological system. (II) Asymptomatic infected (I), Symptomatic infected
( Is) and recovered individuals R inside a system of epidemiology.




Eurasian J. Sci. Eng., 11(3) (2025), 49-65 62

Y

‘ ,
b
"P
%
i
%%

A

»

7
%%
(X)
A
&
..:‘ -"’ ‘
%

o

Y

(/

& 4
\

—stth
R ro2

1

Parameters

State Variables State Variables 2 Parameters

) )

Figure 6: The two figures are local sensitivity analyses for COVID-19 computed with full
normalizations by using MATLAB in this approach, the group of parameters {ry, 7,17} extremely
sensitive compared with other parameters, especially rg is very sensitive to the state variable E
(Exposed individuals), (I) Evaluating the responsiveness of all compartments to various parameters.
(II) Assessing the sensitivity of all compartments to parameters, excluding {ry, 7, 77 }.
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Figure 7: Tne wwo figures are local sensitivity analyses for COVID-19 computed with half
normalizations by using MATLAB; in this approach, both parameters r; and r, are very sensitive
compare with other parameters, especially r, is very sensitive to the state variable Q (Quarantined
individuals), in both figures 3 is very little sensitive to all state variables, (I) evaluation of the
sensitivity of all compartments concerning various parameters. (II) Assessment of the sensitivity of
all compartments concerning various parameters, excluding r; and 7.
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Figure 8: The two figures are local sensitivity analysis for COVID-19 computed with non-
normalizations by using MATLAB, in this approach, the group of parameters {r;,r,,7,} are very
sensitive compare with other parameters, especially r; is very sensitive to the state variable S
(Susceptible individuals), (I) Analysis of the sensitivity of all compartments in relation to all
parameters. (II) Examination of the sensitivity of all compartments with respect to the set of
parameters {r3,7s,7g, 77,7, 79, T10, T11, 12}
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