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Abstract: The COVID-19 epidemic has emerged as a significant worldwide 

health concern, necessitating a thorough analysis of medical data pertaining to 

the virus. This research highlights the need to use mathematical modeling and 

computer simulations to comprehend fundamental transmission properties on 

a nationwide level. To efficiently control illnesses, it is essential to include 

computational methodologies and behavioral evaluations into the 

mathematical equations of the model. This article analyzes the model of the 

coronavirus, beginning with significant global healthcare challenges and 

offering essential guidance. The objective of the research is to investigate the 

COVID-19 case model in Nigeria for the year 2020, using approaches to 

ascertain the existence and uniqueness of the system's solution. The Implicit-

Explicit Runge-Kutta (4,5,5) method was used for numerical computations, 

stability assessment, and sensitivity analysis. The Implicit-Explicit Runge-

Kutta methods are often used as computing techniques for solving differential 

equations. Furthermore, the classical Runge-Kutta techniques are also used to 

solve intricate differential equations to see the efficiency of our technique. The 

data acquired via these procedures provide vital insights into the worldwide 

epidemic. These models have the capacity to forecast forthcoming data 

pertaining to persons who are ill, susceptible, socially isolated, and have 

recovered. This adds to worldwide endeavors in enhancing preventative 

measures and intervention initiatives. Stability analysis is used to identify 

crucial locations where disease transmission may be halted, while sensitivity 

analysis assesses the unique sensitivities of each component of the model to 

factors such as full, half, and non-normalizations. The results indicate that 

nearly every parameter in the model affects the spread of the virus among 

susceptible, exposed, and separated people. 
 

Keywords: Mathematical Modeling; COVID-19 Disease; Stability Analysis; 

Implicit-Explicit Runge-Kutta Method; Sensitivity Analysis.  
 

1. Introduction 

A mathematical model serves as a precise mathematical depiction of real-world phenomena, 

employing symbols, equations, and formulae to encapsulate intricate processes. Given the substantial 

global health impact, it is imperative to gain a comprehensive understanding of and the ability to 

predict the behavior of emerging coronaviruses, such as COVID-19. Many researchers in the 

mathematical, computational, clinical, and investigative fields have worked to model, predict, treat, 

and mitigate the effects of this disease. The scientific community can, however, always do better. The 

relevance of mathematical and computational models for predicting the dynamics of new coronavirus 

diseases has increased in recent years, prompting a plethora of publications in this area. World health 

officials were alarmed when the COVID-19 epidemic broke out in the Chinese city of Wuhan in the 

province of Hubei in the latter half of 2019. In the year that followed, the epidemic had reached nearly 

every corner of the world [1].   

In Wuhan, China, there was a brief period characterized by a succession of perplexing health problems, 

including unexplained instances of coughing, pneumonia, difficulty breathing, exhaustion, and high 
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body temperature. The occurrence of these mysterious diseases led to a sequence of activities, such as 

the shutdown of establishments, educational institutions, and markets, as well as the imposition of 

regulations on social engagements, curfews, lockdowns, and constraints on gatherings, among other 

interventions [2]. Nigeria has been affected by the repercussions of the COVID-19 pandemic. The first 

instance of COVID-19 was officially verified in Lagos State, situated in the southern region of Nigeria, 

on February 27, 2020. The outbreak in the country started when an Italian individual landed in Nigeria 

on February 24, 2020. This person sought medical assistance on February 26, 2020, marking the first 

known case in Nigeria (refer to Fig. 1) [3].  

According to the arrival of the COVID-19 pandemic in Nigeria, the national government, as well as 

several state authorities, established distinct medical organizations and isolation centers as proactive 

measures to combat and manage the transmission of the virus. The Nigerian Center for Disease Control 

(NCDC), a governmental entity, disseminated essential public health information to the Nigerian 

people. This guide included details on symptom recognition, the distribution of vital information, and 

methods for preventing the disease. The NCDC created extensive national and sub-national 

organizations of health service professionals, enhancing the country’s ability to effectively conduct 

contact surveillance and handle cases. Also, the NCDC did a lot of work to make sure that research 

labs could handle more work so that they could step up their pandemic diagnostic game. The goal of 

these concerted actions was to make Nigeria more resilient in the face of the unprecedented health 

calamity that COVID-19 posed. Since the COVID-19 outbreak started, mathematicians have been 

increasingly used by researchers to help better grasp it. Using such models, one may investigate the 

dynamics of the epidemic's progress, the virus's spread, its impacts on individuals, control and 

preventive strategies, and the effectiveness of these actions.  New investigations in this area, as shown 

in the references [4], have significantly increased our understanding of the subject. The features and 

distribution of COVID-19 throughout Lagos, Nigeria, were examined in a research by Okuonghae and 

Omame [5]. At the same time, Roseline and colleagues [6] estimated the pandemic-related death toll 

in Nigeria using linear regression, a statistical approach.  Adegboye and colleagues [7] also looked at 

how COVID-19 spread from its initial transmission to Nigeria. Ajisegiri et al. [8] conducted a 

comprehensive investigation on the COVID-19 epidemic in Nigeria. Researchers from several 

disciplines have conducted crucial research into prospective therapies and preventive measures to 

alleviate the impact of the epidemic, and the results have shown promise. However, it is crucial to 

conduct a thorough study of the most recent models and deliver a reasonable and complete appraisal 

of the present circumstances.  

Despite the numerous modeling approaches suggested for predicting the progression of new 

coronavirus infections, it is evident that this area needs development. The findings are anticipated to 

be of superior quality if the models are formulated based on mass action laws, consist of reaction rate 

constants, and evaluate the sensitivity of every state to the model parameters [9]. The complexity 

involved in solving systems of ordinary differential equations often results in a lack of exact analytical 

solutions for most of these issues. Moreover, these obstacles are exacerbated by the coexistence of 

several temporal scales that develop concurrently inside these issues, despite the numerous 

documented methodologies for reducing models aimed at minimizing complexity and deriving 

analytical solutions [10, 11], but numerical techniques are required for solving such problems. 

Consequently, several scholars have shown a strong interest in investigating these complexities. As a 

result, a wide range of numerical approaches have developed throughout time. The techniques used in 

this context include the techniques Euler method, the Runge-Kutta scheme, the Implicit-Explicit 

(IMEX) Runge-Kutta scheme, the Singly Diagonally Implicit Runge-Kutta (SDIRK) approaches, and 

the Semi-Implicit and Explicit Runge-Kutta approaches. The Implicit-Explicit Runge-Kutta scheme 

(IMEX-RK (4,5,5)) is a popular method for solving differential equation systems (1). This method is 
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significant because practical data shows it solves difficult problems. References [12, 13] provide 

further information on these approaches and their practical applications. 

 

Figure 1: Confirmed COVID-19 Cases-Nigeria 2020 (3). 

2. Mathematical Modeling for the COVID-19 Disease 

This study examines a theoretical framework for comprehending the transmission rates of the 

coronavirus (COVID-19) illness, grounded in basic principles. Propose a dynamic model to depict the 

progression of the human population in relation to the COVID-19 pandemic. Define 𝑁(𝑡) as the 

cumulative human population at a given time 𝑡. Individuals can be classified into six distinct groups: 

susceptible individuals (𝑆(𝑡)), exposed individuals (𝐸(𝑡)), asymptotically infected individuals 

(𝐼𝐴(𝑡)), symptomatic infected individuals (𝐼𝑆(𝑡)), individuals in quarantine (𝑄(𝑡)), and individuals 

who have recovered or been removed from COVID-19 (𝑅(𝑡)). By using this classification, we can 

represent the overall population at a certain moment as the cumulative sum of these six classifications: 

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝑄(𝑡) + 𝐼𝐴(𝑡) + 𝐼𝑆(𝑡) + 𝑅(𝑡). This formulation enables us to monitor and study 

the population's dynamics within the framework of the COVID-19 pandemic, including the different 

phases of infection and recovery. The natural birth rate and mortality rate for humans are represented 

by 𝑟1 and 𝑟2, respectively. Individuals who are susceptible (𝑆)  may transition to the infected condition 

(𝐸)  after being adequately exposed at a rate of 𝑟3. Alternatively, they may transfer to the quarantined 

class at a rate of 𝑟4. There are three potential outcomes for exposed people (𝐸): they may change to 

the quarantined class (𝑄)  at a rate of 𝑟5, become infected asymptomatically (𝐼𝐴)  at a rate of 𝑟7, or get 

infected symptomatically (𝐼𝑆)  at a rate of 𝑟6. Individuals in the quarantined state (𝑄)  may also be 

verified as infectious, either with symptoms (𝐼𝑆)  or without symptoms (𝐼𝐴), at rates of 𝑟8  and 𝑟9, 

respectively. The recovery rate for persons who are infected but show no symptoms (𝐼𝐴)  is denoted 

as 𝑟12, whereas the recovery rate for those who are infected and show symptoms (𝐼𝑆)  is denoted as 

𝑟11. Natural mortality, represented by the parameter 𝑟2, may cause a decline in the population of each 

of these groups. Additionally, the population of persons infected with symptoms (𝐼𝑆)  can be reduced 

by death caused by the sickness at a specified rate. The infected class of people without symptoms (𝐼𝐴)  

does not include mortality because of the illness. This model fails to include the possibility of 

reinfection after the process of healing. Figure 2 displays the schematic design depicting the 

transmission of COVID-19. Table 1 contains an extensive compilation of biologically significant 

parameters and their respective values. The model's system of differential equations is expressed in 

system (1). 
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Figure 2: The model examines the interactions between individuals and the transmission rates of the 

coronavirus disease (COVID-19) [3]. 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑟1 − (𝑟4 + 𝑟2)𝑆(𝑡) − 𝑟3𝑆(𝑡)𝐸(𝑡), 

          
𝑑𝐸(𝑡)

𝑑𝑡
= 𝑟3𝑆(𝑡)𝐸(𝑡) − (𝑟5 + 𝑟2 + 𝑟6 + 𝑟7)𝐸(𝑡), 

(1)                                                    
𝑑𝑄(𝑡)

𝑑𝑡
= 𝑟4𝑆(𝑡) + 𝑟5𝐸(𝑡) − (𝑟2 + 𝑟8 + 𝑟9)𝑄(𝑡), 

    
𝑑𝐼𝐴(𝑡)

𝑑𝑡
= 𝑟7𝐸(𝑡) + 𝑟9𝑄(𝑡) − (𝑟2 + 𝑟12)𝐼𝐴(𝑡), 

                
𝑑𝐼𝑆(𝑡)

𝑑𝑡
= 𝑟6𝐸(𝑡) + 𝑟8𝑄(𝑡 ) − (𝑟10 + 𝑟2 + 𝑟11)𝐼𝑆(𝑡), 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝑟12𝐼𝐴(𝑡) + 𝑟11𝐼𝑆(𝑡) − 𝑟2𝑅(𝑡).       

 

With initial conditions:  
(2)                                                                       (𝑆(0), 𝐸(0), 𝑄(0), 𝐼𝐴(0), 𝐼𝑆(0), 𝑅(0)) =  (0.5, 0.2, 0.1, 0.2, 0.1, 0).  

 

Table 1: Set of parameters with their biological meanings [3]. 

Parameter  Description  Values 

𝑟1 Recruitment (natality) rate 0.02537 

𝑟2 Natural mortality rate 0.0106 

𝑟3 The contact rate between individuals who are susceptible to 

a particular infection and those who have been exposed to it 

plays a crucial role in the transmission dynamics of the 

disease. 

0.0805 

𝑟4 Transfer rate from susceptible individuals to quarantine  0.0002 

𝑟5 The rate of exposed people being transferred to quarantine 2.0138e − 4 

𝑟6 Rate of transition from the exposed population to the 

symptomatic infected population. 

0.4478 

𝑟7 The transition rate from the group of individuals who have 

been exposed to the class of asymptomatic individuals. 

0.0668 

𝑺 

𝑸 

𝑬 

𝑰𝑨 

𝑰𝑺 

𝑹 

𝑟1 
𝑟4𝑆 

𝑟2𝑆 

𝑟2𝑄 

𝑟2𝑅 

𝑟9𝑄 
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𝑟8 The transition rate from the quarantined population to the 

symptomatic infected category. 

3.2084𝑒 − 4 

𝑟9 

 

 

𝑟10 

The ratio of individuals placed in quarantine to those who 

are asymptomatic and infected is a crucial metric in 

assessing the effectiveness of public health measures. 

Coronavirus-related mortality rate in the class of those who 

are symptomatic and infected. 

0.0101 

 

 

1.6728𝑒 − 5 

𝑟11 Recovery rate of those with symptoms of infection. 1.6728𝑒 − 5 

𝑟12 Recovery rate of asymptomatic infected individuals 5.7341𝑒 − 5 

 
3. Existing and Uniqueness Solution for the System  

To apply the numerical methods to any system of differential equations, first, we have to show that 

this system has a unique solution. Here we prove that the solution of system (1) exists and is also 

unique based on the Picard-Lindel𝑜̈f theorem [14], The Picard-Lindel𝑜̈The theorem states that if the 

right-hand side of an ODE system is Lipschitz continuous and continuous with respect to the dependent 

variables, then there exists a unique solution to the initial value problem. Consider the system of DEQ 

(1) with initial conditions given in (2). Let us define the vector of components and the vector field 

𝐹(𝐶) represents the system (1): 

𝐶(𝑡) =

(

 
 
 

𝑆(𝑡)

𝐸(𝑡)

𝑄(𝑡)
𝐼𝐴(𝑡)

𝐼𝑆(𝑡)

𝑅(𝑡))

 
 
 

,   𝐹(𝐶) =

(

 
 
 
 

𝑟1 − (𝑟4 + 𝑟2)𝑆 − 𝑟3𝑆𝐸

𝑟3𝑆𝐸 − (𝑟5 + 𝑟2 + 𝑟6 + 𝑟7)𝐸

𝑟4𝑆 + 𝑟5𝐸 − (𝑟2 + 𝑟8 + 𝑟9)𝑄

𝑟7𝐸 + 𝑟9𝑄 − (𝑟2 + 𝑟12)𝐼𝐴
𝑟6𝐸 + 𝑟8𝑄 − (𝑟10 + 𝑟2 + 𝑟11)𝐼𝑆

𝑟12𝐼𝐴 + 𝑟11𝐼𝑆 − 𝑟2𝑅 )

 
 
 
 

. 

 

Based on the definition of a polynomial function, each component of 𝐹(𝐶) is a polynomial in 

𝑆, 𝐸, 𝑄, 𝐼𝐴, 𝐼𝑆, and 𝑅. And polynomials are continuous functions. Therefore, 𝐹(𝐶) is continuous. In 

order to verify Lipschitz continuity, it is necessary to demonstrate the existence of a constant 𝐿 that is 

sufficient for every pair of vectors 𝐶1 and 𝐶2, 

‖𝐹(𝐶1) − 𝐹(𝐶2)‖ ≤ 𝐿‖𝐶1 − 𝐶2‖. 

Let us define the Jacobian matrix for 𝐹(𝐶) as follows: 

(3)                                      Jacobian(𝐹) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑆

𝜕𝑓1
𝜕𝐸

𝜕𝑓1
𝜕𝑄

𝜕𝑓1
𝜕𝐼𝐴

𝜕𝑓1
𝜕𝐼𝑆

𝜕𝑓1
𝜕𝑅

𝜕𝑓2

𝜕𝑆

𝜕𝑓2

𝜕𝐸

𝜕𝑓2

𝜕𝑄

𝜕𝑓2

𝜕𝐼𝐴

𝜕𝑓2

𝜕𝐼𝑆

𝜕𝑓2

𝜕𝑅
𝜕𝑓3

𝜕𝑆

𝜕𝑓3

𝜕𝐸

𝜕𝑓3

𝜕𝑄

𝜕𝑓3

𝜕𝐼𝐴

𝜕𝑓3

𝜕𝐼𝑆

𝜕𝑓3

𝜕𝑅
𝜕𝑓4
𝜕𝑆

𝜕𝑓4
𝜕𝐸

𝜕𝑓4
𝜕𝑄

𝜕𝑓4
𝜕𝐼𝐴

𝜕𝑓4
𝜕𝐼𝑆

𝜕𝑓4
𝜕𝑅

𝜕𝑓5

𝜕𝑆

𝜕𝑓5

𝜕𝐸

𝜕𝑓5

𝜕𝑄

𝜕𝑓5

𝜕𝐼𝐴

𝜕𝑓5

𝜕𝐼𝑆

𝜕𝑓5

𝜕𝑅
𝜕𝑓6

𝜕𝑆

𝜕𝑓6

𝜕𝐸

𝜕𝑓6

𝜕𝑄

𝜕𝑓6

𝜕𝐼𝐴

𝜕𝑓6

𝜕𝐼𝑆

𝜕𝑓6

𝜕𝑅]
 
 
 
 
 
 
 
 
 
 
 
 
 

.  
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(4)        Jacobian (𝐹) =

[
 
 
 
 
 
−𝑟4 − 𝑟2 − 𝑟3𝐸 −𝑟3𝑆 0 0 0 0

𝑟3𝐸 𝑟3𝑆 − 𝑟5 − 𝑟2 − 𝑟6 − 𝑟7 0 0 0 0
𝑟4 𝑟5 −𝑟2 − 𝑟8 − 𝑟9 0 0 0
0 𝑟7 𝑟9 −𝑟2 − 𝑟12 0 0
0 𝑟6 𝑟8 0 −𝑟10 − 𝑟2 − 𝑟11 0
0 0 0 𝑟12 𝑟11 −𝑟2]

 
 
 
 
 

 

Next, we find the Lipschitz constant 𝐿 by applying the following formula: 

𝐿 = max (∑ |
𝜕𝑓𝑖

𝜕𝑐𝑗
|6

𝑗=1 )  for  𝑖 = 1,2, … ,6. 

By definition, we have 𝑆, 𝐸 ≥ 0 , then for 𝑖 = 1, the part of 𝑓1 is |−(𝑟4 + 𝑟2) − 𝑟3𝐸  | + |−𝑟3𝑆| + 0 +

0 + 0 + 0 = 𝑟4 + 𝑟2 + 𝑟3𝐸 + 𝑟3𝑆, then  𝑓1 = 𝑟4 + 𝑟2 + 𝑟3(𝐸 + 𝑆), in the same way for 𝑖 = 2,3,4,5 we 

conclude that (𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6) = (𝑟3𝐸 + 𝑟3𝑆 + (𝑟5 + 𝑟2 + 𝑟6 + 𝑟7), 𝑟4 + 𝑟5 + 𝑟2 + 𝑟8 + 𝑟9, 𝑟7 + 𝑟9 +

𝑟2 + 𝑟12, 𝑟6 + 𝑟8 + 𝑟10 + 𝑟2 + 𝑟11, 𝑟12 + 𝑟11 + 𝑟2), then, the Lipschitz constant is 𝐿 =

max(𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6). And by substituting the values of  𝑆 and 𝐸 , from equation (2), 𝐿 becomes 

𝐿 = max(𝑟2 + (0.7)𝑟3 + 𝑟4, 𝑟2 + (0.7)𝑟3 + 𝑟5 + 𝑟6 + 𝑟7, 𝑟2 + 𝑟4 + 𝑟5 + 𝑟8 + 𝑟9, 𝑟2 + 𝑟7 + 𝑟9
+ 𝑟12, 𝑟2 + 𝑟6 + 𝑟8 + 𝑟10 + 𝑟11, 𝑟2 + 𝑟11 + 𝑟12). 

The partial derivatives are bounded because all the 𝑟𝑖 values are constant, as seen in Table 1. Thus, 

the existence of this constant 𝐿 guarantees that the Lipschitz condition is met. We proved that 𝐹(𝐶) 

is continuous and satisfies the Lipschitz condition, then by Picard-Lindelöf theorem, the solution of 

the system (1) exists, and it is unique 𝑡 = 0. 

 

4. Methods and Qualitative Analysis 

Systems of ordinary differential equations are used to mathematically simulate a variety of scientific 

and technical problems, and there are several techniques to study the dynamic behavior of state 

variables. In this paper, we work with three different techniques for the given model. The main concept 

of IMEXRK is to divide it into two methods: implicit-explicit Runge-Kutta, with the linear component 

being treated by an implicit scheme and the nonlinear term being treated by an explicit scheme. For 

more information, see [12, 15]. To make progress, we return to system (1) and concentrate on non-

linear systems of ordinary differential equations, applying the concepts detailed in the preceding 

sections. 

𝐹(𝑡, 𝑥(𝑡)) =

[
 
 
 
 
 
 
𝑟1 − (𝑟4 + 𝑟2)𝑆(𝑡)                                                        

−(𝑟5 + 𝑟2 + 𝑟6 + 𝑟7)𝐸(𝑡)                                             
                                                     

𝑟4𝑆(𝑡) + 𝑟5𝐸(𝑡) − (𝑟2 + 𝑟8 + 𝑟9)𝑄(𝑡)                    

𝑟7𝐸(𝑡) + 𝑟9𝑄(𝑡) − (𝑟2 + 𝑟12)𝐼𝐴(𝑡)                           

𝑟6𝐸(𝑡) + 𝑟8𝑄(𝑡 ) − (𝑟10 + 𝑟2 + 𝑟11)𝐼𝑆(𝑡)                

𝑟12𝐼𝐴(𝑡) + 𝑟11𝐼𝑆(𝑡) − 𝑟2𝑅(𝑡)                                      ]
 
 
 
 
 
 

 , 𝑮(𝑡, 𝒙(𝑡)) =

[
 
 
 
 
 
 

−𝑟3𝑆(𝑡)𝐸(𝑡)   

𝑟3𝑆(𝑡)𝐸(𝑡)
0                       
0                       

     

0                           
0                           
0                           

 
]
 
 
 
 
 
 

. 

Returning to (1) and substituting earlier equations, this results in: 

 (5)                                                                  
𝑑𝒚(𝒕)

𝑑𝑡
= 𝑭(𝑡, 𝒙(𝑡)) + 𝑮(𝑡, 𝒙(𝑡)), 

where 𝒚(𝑡) = [𝑆(𝑡) 𝐸(𝑡) 𝑄(𝑡)𝐼𝐴(𝑡) 𝐼𝑆(𝑡) 𝑅(𝑡)]T. While the non-stiff portion 𝐺(𝑡, 𝑥(𝑡))  is addressed 

using an explicit Runge-Kutta (ERK), the solution of the stiff component 𝐹(𝑡, 𝑥(𝑡))  is produced by 

using a diagonally implicit Runge-Kutta (DIRK) methodology. In this context, the basis of an implicit-

explicit Runge-Kutta (𝑠-stage ERK) method is formed by both the 𝑠-stage ERK and DIRK procedures 

using comparable weighting coefficients, indicated as 𝑖, where 𝑖 = 1,2,… , 𝑠. 
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𝑐1 𝑎11 0 0 ⋯ 0  𝑐̂1 0 0 0 ⋯ 0 

𝑐2 𝑎21 𝑎22 0 ⋯ 0  𝑐̂2 𝑎̂21 0 0 ⋯ 0 

𝑐3 𝑎31 𝑎32 𝑎33 ⋯ 0  𝑐̂3 𝑎̂31 𝑎̂32 0 ⋯ 0 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮  ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑐𝑠 𝑎𝑠1 𝑎𝑠2 𝑎𝑠3 ⋯ 𝑎𝑠𝑠  𝑐̂𝑠 𝑎̂𝑠1 𝑎̂𝑠2 𝑎̂𝑠3 ⋯ 0 

 𝑏1 𝑏2 𝑏3 ⋯ 𝑏𝑠   𝑏̂1 𝑏̂2 𝑏̂3 ⋯ 𝑏̂𝑠 

 

A more concise expression of this could possibly be achieved with the Kronecker product. 
 

      

 

 

 

The symbols [I] and [E] are employed to denote the implicit along explicit elements, respectively, 

inside the sentence. The term 𝒚n+1, which is estimated using the following method, has been defined 

as: 

𝒚𝑛+1 = 𝒚𝑛 + Δt ∑ 𝑏𝑖𝒌𝑖

𝑠

𝑖=1

, where  

𝒌𝑖 = 𝑭(𝑡 + Δt, 𝒚𝑛 + Δt ∑𝑎𝑖𝑗𝑘𝑗

𝑖

𝑗=1

) + 𝑮(𝑡 + Δt, 𝒚𝑛 + Δt ∑𝑎̂𝑖𝑗𝑘𝑗

𝑖−1

𝑗=1

) , 𝑖 = 1,2, … , 𝑠. 

Table 2 shows the coefficients of our IMEX-RK (4,5,5) technique, which is a 5-stage IERK approach 

with fourth-order accuracy. 

 

Table 2: Fourth-order implicit-explicit Runge-Kutta technique coefficients IMEX-RK (4,5,5). 

 

and 

 

5. Analysis of COVID-19 Disease Systems  

At the levels of the variables that cause the rates of change to become zero, we say that the system is 

in equilibrium. These coordinates stand for a steady condition when the system does not change. Points 

of equilibrium in our COVID-19 illness model would be when there is no longer any change in the 

numbers of people in each compartment. The existence of many equilibrium points might lead to 

c[I] 𝒜[I]  c[E] 𝒜[E] 

  

(b[I])
T

 

    

(b[E])
T

 

𝑐1                  1/4                                   0                                    0                                       0                  0 

𝑐2 0.34114705729739                       1/4                                   0                                       0                  0 

𝑐3 0.80458720789763        −0.07095262154540                      1/4                                   0                  0 

𝑐4 −0.52932607329103      1.15137638494253        −0.80248263237803                     1/4                0 

𝑐5 0.11933093090075          0.55125531344927      −0.1216872844994         0.20110104014943     1/4 

 0.11933093090075          0.55125531344927      −0.1216872844994         0.20110104014943     1/4 

𝑐̂1              0                                       0                                  0                                       0                       0 

𝑐̂2 0.39098372452428                       0                                  0                                       0                       0 

𝑐̂3 1.09436646160460       0.33181504274704                     0                                       0                       0 

𝑐̂4 0.14631668003312       0.69488738277516      0.46893381306619                         0                       0 

𝑐̂5 −1.33389883143642     2.90509214801204      −1.06511748457024          0.27210900509137     0 

 0.11933093090075          0.55125531344927      −0.1216872844994         0.20110104014943       1/4 
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various consequences for disease dynamics. To determine the equilibrium points, we may solve the 

system (1) by setting every rate of change equation to zero, then calculating for the relevant variables.   

𝑑𝑆(𝑡)

𝑑𝑡
=  

𝑑𝐸(𝑡)

𝑑𝑡
=

𝑑𝑄(𝑡)

𝑑𝑡
=

𝑑𝐼𝐴(𝑡)

𝑑𝑡
=

𝑑𝐼𝑆(𝑡)

𝑑𝑡
=

𝑑𝑅(𝑡)

𝑑𝑡
=  0. 

We calculated the values of variables 𝑆, 𝐸, 𝑄, 𝐼𝐴, 𝐼𝑆, and 𝑅 by equating each component to zero and 

replacing parameters from Table 1. This identified two equilibrium points: 

𝐸1 = (2.3491, 0, 2.2350𝑒 − 2, 2.1181𝑒 − 2, 6.7436𝑒 − 4, 1.1564𝑒 − 4) and  

𝐸2 = (6.5267,−8.5875𝑒 − 2, 6.1275𝑒 − 2,−4.8019𝑒 − 1,−3.6145,   − 8.3017𝑒 − 3). 

A large susceptible population (𝑆)  and low exposed (𝐸) and quarantined (𝑄) populations are predicted 

at the equilibrium point (𝐸1). Small numbers of asymptomatic (𝐼𝐴) and symptomatic (𝐼𝑆) infected 

people exist. The recovered population (𝑅) is extremely restricted, indicating a managed sickness 

where most individuals are susceptible. 𝐸, 𝐼𝐴, 𝐼𝑆 and 𝑅 are negative at 𝐸2, the second equilibrium point. 

Negative numbers are not physically meaningful and may indicate model or calculation errors. 

Linearization is a useful approach for gaining a deeper understanding of systems around equilibrium 

points. The eigenvalues and Jacobian matrix may be obtained for every equilibrium point.  

The eigenvalues of 𝐸1 were computed, and the resulting values were inserted into the Jacobian matrix 

(4). The given numeric values  

(𝜆1,  𝜆2,  𝜆3,  𝜆4, 𝜆5, 𝜆6) = (−0.0106,−0.0210,−0.0106,−0.0107,−0.3363,−0.0108), 

if the eigenvalues are negative, then 𝐸1 is considered stable. This stability means the illness may be 

treated or prevented, possibly by isolation until a vaccine is available. We plot 2D and 3D phase 

portraits from various viewpoints to analyze the behavior of a system (1). The phase image illustrates 

the impact of changes in population compartments on others, hence displaying the dynamics of the 

system. Comparing many groups allows researchers to get insight into the stability and behavior of the 

system under different conditions. In epidemiology, this knowledge is fundamental for creating 

efficient treatments and control techniques. We determine the stability behavior for these components 

by plotting a 2D for the number of exposed vs susceptible, susceptible vs quarantined, quarantined vs 

exposed, and asymptomatic vs symptomatic infected persons. And we plot a 3D since the 3D phase 

portrait offers a thorough understanding of the dynamic behavior of the epidemiological system. The 

stability and long-term behavior of the system may be understood by examining the vector field and 

trajectories, which can assist in guiding the development of disease control measures. First, we plot 

the group of ( 𝑆, 𝐸, and 𝑄 ) and then ( 𝐼𝐴, 𝐼𝑆 and 𝑅) for analyzing the relationship between them, so we 

will discuss more about it in section 7. 

6. Sensitivity Analysis 

One of the best ways to better comprehend the dynamics of the biological system and investigate the 

mathematical model's output is sensitivity analysis via the mass action law. The sensitivity analysis 

method formulation with 𝑚 reversible reactions and 𝑛 components are simply presented below: 

 (6)                                                                  ∑ 𝛼𝑖𝑗  𝒞𝑗    
ℛ𝑖

𝑓

⇌ 
ℛ𝑖

𝑏

  ∑ 𝛽𝑖𝑗  𝒞𝑗  ,       𝑖 = 1,2, … ,𝑚,

𝑛

𝑗=1

𝑛

𝑗=1

 

The elements of 𝒞𝑗, where 𝑗 ranges from 1 to 𝑛, are represented by 𝛼𝑖𝑗 and 𝛽𝑖𝑗, which are integers 

that are non-negative. The reactions, both forward as well as backward, are always occurring with 

𝑅𝑖
𝑓

> 0 and 𝑅𝑖
𝑏 ≥ 0. The response rates may be determined by using the mass action formula. 

 (7)                                                                  𝑟𝑖 = ℛ𝑖
𝑓
∏ 𝒞

𝑗

𝛼𝑖𝑗
(𝑡)

𝑛

𝑗=1

− ℛ𝑖
𝑏 ∏ 𝒞

𝑗

𝛽𝑖𝑗(𝑡)

𝑛

𝑗=1

. 
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Therefore, the system of DEqs is shown as follows 

 (8)                                                                              
𝑑𝒞

𝑑𝑡
= ∑ 𝛾𝑖  𝑟𝑖

𝑖∈𝐽⊂ℝ

 ,   

Where 𝛾𝑖 = 𝛽𝑖𝑗 − 𝛼𝑖𝑗  , for 𝑖 = 1,2, … ,𝑚 and 𝑗 = 1,2, … , 𝑛. Equation (8) may be expressed as follows: 

(9)                                                                    
𝑑𝒞𝑗

𝑑𝑡
= ℓ𝑗(𝒞, ℛ),  

Where 𝒞 ∈ ℝ𝑛 and ℛ ∈ ℝ𝑚. The vector of elements serves as the inputs as well as the outcomes of 

the model [16, 17]. Moreover, local sensitivity refers to the variation in the model variables 𝒞𝑗, 𝑗 =

1,2,… , 𝑛 with respect to the parameters of the model ℛ𝓅, 𝓅 = 1,2, … ,𝑚.  The sensitivity model 

formula for each variable with respect to the parameters is often written as follows: 

 (10)                                                 𝒮𝑗𝓅 =
𝜕𝒞𝑗

𝜕ℛ𝓅

= lim
∆ℛ𝓅→0

𝒞𝑗(ℛ𝓅 + ∆ℛ𝓅) − 𝒞𝑗(ℛ𝓅)

∆ℛ𝓅

 

Equation (5.5) could be computed by the finite difference approach in the following way. 

(11)                                                   𝒮𝑗𝓅 =
𝜕𝒞𝑗

𝜕ℛ𝓅

≈
𝒞𝑗(ℛ𝓅 + ∆ℛ𝓅) − 𝒞𝑗(ℛ𝓅)

∆ℛ𝓅

 

In essence, direct analysis of sensitivity is conducted to formulate the sensitivity formula, which 

requires solving DEqs for sensitivity coefficients. 

(12)                                                   
𝜕𝒮𝑗𝓅

𝜕𝑡
=

𝜕

𝜕𝑡
(

𝜕𝒞𝑗

𝜕ℛ𝓅

) =
𝜕

𝜕ℛ𝓅

(
𝜕𝒞𝑗

𝜕𝑡
) =

𝜕

𝜕ℛ𝓅

(ℓ𝑗(𝒞(𝑡), ℛ)). 

Thus, the Jacobian matrix is applied in the local sensitivity expression in the following ways: 

(13)                                                            𝒮̇ = ℒℛ𝓅
+ ℐ. 𝒮,   𝓅 = 1,2,… ,𝑚, 

The matrices 𝒮, ℒℛ𝓅
 and 𝒥 are given below. 

 

𝒮 =

(

 
 
 
 
 

𝜕𝒞1

𝜕ℛ𝓅

𝜕𝒞2

𝜕ℛ𝓅

⋮
𝜕𝒞𝑛

𝜕ℛ𝓅)

 
 
 
 
 

, ℒℛ𝓅
=

(

 
 
 
 
 

𝜕ℓ1

𝜕ℛ𝓅

𝜕ℓ2

𝜕ℛ𝓅

⋮
𝜕ℓ𝑛

𝜕ℛ𝓅)

 
 
 
 
 

, 𝑎𝑛𝑑   𝒥 =

(

 
 
 
 
 

𝜕ℓ1

𝜕𝒞1
       

𝜕ℓ2

𝜕𝒞1
       

⋮       
𝜕ℓ𝑛

𝜕𝒞1
      

𝜕ℓ1

𝜕𝒞2
   ⋯ 

𝜕ℓ2

𝜕𝒞2
  ⋯

   ⋮       ⋱
𝜕ℓ𝑛

𝜕𝒞2
   ⋯

  

𝜕ℓ1

𝜕𝒞𝑛
  

𝜕ℓ2

𝜕𝒞𝑛

⋮
𝜕ℓ𝑛

𝜕𝒞𝑛 )

 
 
 
 
 

.                     

 

The initial conditions for the system (5.8) are computed by entering parameters ℛ𝓅 and initial 

conditions for output components 𝒞𝑗. Readers might find further information in [17, 18]. The 

Symbiology Toolbox in MATLAB allows for the computation of local sensitivity values in equation 

(13) using three distinct methods: complete normalization, half normalization, and non-normalization. 

For complex modeling situations, such as the coronavirus, it is essential to thoroughly and precisely 

prioritize sensitivity analysis. Consequently, we have a look at the coronavirus equations from system 

(1) and determine the local sensitivity of the model compartments to the model parameters in three 

separate cases. These results are shown in Figures (4-6). 

 

7. Numerical Results 

The purpose of this part is to demonstrate the usefulness and effectiveness of a certain method by 

implementing a numerical solution using MATLAB. In this section, we use two different computation 

techniques: the Implicit-Explicit Runge-Kutta (IMEX-RK) approach has a setup of (4, 5, 5), and the 

conventional Explicit Runge-Kutta (ERK) approach. The purpose of this part is to demonstrate the 

usefulness and effectiveness of a certain method by implementing a numerical solution using 

MATLAB. This section will employ two distinct computational methods: the Implicit-Explicit Runge-
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Kutta (IMEX-RK) approach, characterized by a configuration of (4, 5, 5), and the traditional Explicit 

Runge-Kutta (ERK) methodology. The tactics will be used to tackle the system delineated in equation 

(1). In this context, the numbers 4 and 5 represent the numerical scheme's order and the number of 

steps for both implicit and explicit procedures, respectively. The starting populations, as well as 

parameter data in this research, are sourced through the health organization with Nigerian centers of 

control of illnesses as documented in [3].   

 

             (a)                                                                   (b)                                                              (c) 

 

                     (d)                                                       (e)                                                         (f) 

Figure 3: Numerical approximation solutions for the COVID-19 model system (1) in Nigeria using 

IMEX-RK (4,5,5) and classical Runge-Kutta. (a) Describes the variety of populations that are 

susceptible (𝑆), (b) populations that were exposed (𝐸), (c) quarantined groups (𝑄), (d) 

asymptomatically infected groups (𝐼𝐴), (e) symptomatically infected populations (𝐼𝑆), and (f) 

recovered groups of people (𝑅). 

Table 3: Comparison of Classical Runge-Kutta and IMEX-RK (4, 5, 5) Fourth-Order Techniques. 

Time 

(week) 

Classical Runge-Kutta of order four IMEX-RK (4,5,5) 

ℎ = 0.01 ℎ =  1 

𝑺 𝑬 𝑸 𝑺 𝑬 𝑸 

0 0.5 0.2 0.1 0.5 0.2 0.1 

20 0.844549 1.611131 e-05 6.796845 e-02 0.844477 2.359809 e-05 6.797030 e-02 

40 1.136823 2.187407 e-09 4.792545 e-02 1.136760 4.492074 e-09 4.792754 e-02 

60 1.372321 4.534481 e-13 3.561369 e-02 1.372267 1.263021 e-12 3.561558 e-02 

80 1.562069 1.321962 e-16 2.821411 e-02 1.562023 4.869289 e-16 2.821564 e-02 

100 1.714956 5.072652 e-20 2.390735 e-02 1.714917 2.423082 e-19 2.390851 e-02 

120 1.838143 2.428817 e-23 2.152444 e-02 1.838110 1.481955 e-22 2.152527 e-02 

140 1.937399 1.390020 e-26 2.031848 e-02 1.937371 1.070604 e-25 2.031904 e-02 

160 2.017373 9.184695 e-30 1.981575 e-02 2.017349 8.847147 e-29 1.981612 e-02 
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Table 4: Comparison of Classical Runge-Kutta and IMEX-RK (4, 5, 5) Fourth-Order Techniques. 

 
8. Discussion and Conclusion 

The health care program needs a full understanding of the transmission of infectious diseases for 

controlling or preventing them, and to properly understand, we need mathematical modeling and 

computational simulations. Theoretical investigation into such models supports biologists in order to 

predict model behaviors and identify important parameters of the model. First, we proved that the 

solution of system (1) exists and is unique, then we employed the IMEX-RK technique to compute 

numerical approximations for the COVID-19 differential equation system, incorporating both stiff and 

non-stiff components. The implicit scheme handles the stiff segment, while the explicit scheme 

manages the other portion. A key focus of our approach is diminishing iteration count, thereby lowering 

the computational burden. The results unequivocally demonstrate the superiority of our method over 

the classical Runge-Kutta method in stability and computational efficiency.  

Therefore, we have computed approximate solutions for each state of the model using the reported 

cases, see Figure 3. These calculations mark a substantial stride forward in pinpointing pivotal 

elements within the model and charting the course for prospective enhancements. The computational 

outcomes acquired have the potential to bolster global initiatives focused on mitigating the impact of 

the ailment on individuals and facilitating the implementation of broader strategies for curbing the 

transmission of the coronavirus within communities. Additionally, in our stability analysis, we have 

discerned a stable point, signifying that at this juncture, the disease exhibits stability. This finding 

underscores the effectiveness of containment measures, such as quarantine or direct vaccination, in 

controlling the disease's further dissemination. 

Consequently, we have calculated a phase portrait in 2D dimensions for 𝑆 vs 𝐸, 𝑆 vs 𝑄, 𝐸 vs 𝑄, and 𝐼𝐴 

vs , 𝐼𝑆 which is presented in Figure 4. The plots' red arrows show which way the system is moving in 

phase space. And about their behavior, these trajectories imply the existence of equilibrium sites, or 

attractors, where the system gradually stabilizes. And the nonlinear character of these correlations 

points to intricate interactions between the model's various compartments, which is characteristic in 

epidemiological models where a variety of factors influence the transmission of disease. These phase 

180 2.081810 6.813972 e-33 1.971869 e-02 2.081791 8.148628 e-32 1.971891 e-02 

200 2.133730 5.549553 e-36 1.984277 e-02 2.133714 8.191531 e-35 1.984288 e-02 

Time 

(week) 

Classical Runge-Kutta of order four IMEX-RK (4,5,5) 

ℎ = 0.01 ℎ =  1 

𝑰𝑨 𝑰𝑺 𝑹 𝑰𝑨 𝑰𝑺 𝑹 

0 0.2 0.1 0 0.2 0.1 0 

20 0.199441  0.234744 2.907360 e-04 0.199448 0.234797 2.907026 e-04 

40 0.171490  0.190114 4.897543 e-04 0.171497 0.190163 4.897440 e-04 

60 0.146037  0.153930 6.110213 e-04 0.146043 0.153970 6.110270 e-04 

80 0.123727  0.124622 6.746733 e-04 0.123732 0.124655 6.746895 e-04 

100 0.104667  0.100897 6.969194 e-04 0.104671 0.100924 6.969425 e-04 

120 8.867742 e-02 8.169795 e-02 6.904617 e-04 8.868103 e-02 8.171998 e-02 6.904889 e-04 

140 7.544328 e-02 6.616693 e-02 6.650216 e-04 7.544642 e-02 6.618493 e-02 6.650511 e-04 

160 6.460206 e-02 5.360659 e-02 6.278741 e-04 6.460478 e-02 5.362131 e-02 6.279044 e-04 

180 5.579220 e-02 4.345094 e-02 5.843379 e-04 5.579455 e-02 4.346297 e-02 5.843680 e-04 

200 4.867884 e-02 3.524104 e-02 5.382016 e-04 4.868085 e-02 3.525088 e-02 5.382307 e-04 
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portraits show how modifications in one population compartment impact other population 

compartments, offering insight into the system's dynamics. To create efficient interventions and control 

techniques in epidemiology, researchers must first understand the stability and behavior of the system 

under various conditions, which can be accomplished by examining these plots. And the 3D phase 

portrait for 𝑆, 𝐸, and 𝑄  together and 𝐼𝐴, 𝐼𝑆 and 𝑅 together presented in Figure 5), shows that the 

system's vector field, represented by the red arrows, shows the motion and rate of change of the 

variables, and illustrates the way a system changes over time. And the blue curve represents a trajectory 

or a solution for the system. This trajectory shows how the variables vary with time, beginning at a 

specific initial state. Figure 5 (I) illustrates that while the number of susceptible people decreases the 

number of the number of exposed people increases and then stabilizes, meanwhile the number of 

individuals from quarantine people are increases. And from the whole 3D phase portrait, it's clear that 

the system will eventually stabilize. And Figure 5(II) demonstrates that at first, the number of 

asymptomatic infected people rises while that of symptomatic infected people declines. There is a 

gradual increase in the number of recovered individuals, suggesting that people progress through 

stages of infection to recovery. The trajectory indicates that populations that are asymptomatic, 

symptomatic, and recovered eventually lead to stabilization. Understanding the stability and long-term 

behavior of the system is essential for comprehending the dynamics of disease progression and 

recovery. This can be achieved by evaluating the vector field and trajectories. Public health policies 

for controlling transmission and recovery from infectious diseases can benefit from this approach. 

Incorporating the principle of local sensitivity analysis, as outlined in equation (13), represents a 

pivotal advancement in our quest for further exploration and model refinement. The calculation of 

local sensitivity concerning each model compartment in relation to model parameters necessitates the 

utilization of the Symbiology Toolbox within MATLAB. We employ three distinct methodologies to 

assess the sensitivities of these models: full normalizations, half normalizations, and non-

normalizations, as illustrated in Figures 4-6. Remarkably, these results not only enhance our 

comprehension of the model but also enable us to identify the pivotal parameters critical to its 

performance. Figure 6 clearly illustrates that the group of parameters {𝑟1, 𝑟6, 𝑟7} exhibits the highest 

level of sensitivity concerning the dynamics of COVID-19. Particularly, 𝑟6 which represents the rate 

of transition from the exposed class to symptomatic infected individuals’ class, demonstrates a 

remarkably strong sensitivity to the state variable E, representing the population of exposed 

individuals. In contrast, the parameters {𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟8, 𝑟9, 𝑟10, 𝑟11, 𝑟12} appear to have a less 

pronounced impact on the overall model. Figure 7 provides us with the model parameters 

𝑟2, 𝑟3, 𝑟5, 𝑟6, 𝑟7, 𝑟8, 𝑟9, 𝑟10, 𝑟11 and 𝑟12 are the least critical, especially 𝑟3 is very sensitive for all state 

variables, but 𝑟1 and 𝑟4 are typically critical to a model, especially 𝑟4 is very sensitive to the state 

variable 𝑄 (Quarantined individuals). Figure 8 also shows that the group 

{𝑟3, 𝑟5, 𝑟6, 𝑟7, 𝑟8, 𝑟9, 𝑟10, 𝑟11, 𝑟12} model parameters are the lowest critical, whilst the set of model 

parameters {𝑟1, 𝑟2, 𝑟4} becoming sensitive to the model states, especially 𝑟1 (Rate of recruiting), it is 

very sensitive to the state variable 𝑆 (Susceptible individuals). 

Therefore, employing computational simulations to pinpoint the pivotal parameters of the model under 

examination proves to be a highly efficient approach for comprehensively exploring the model, both 

in practical and theoretical contexts. Furthermore, this method allows for the formulation of 

recommendations aimed at advancing future endeavors in the field of coronavirus prevention, 

encompassing vaccination strategies, treatment modalities, and disease control measures. 
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Figure 4: The relationship between two important variables is shown in each plot: S vs E, indicating 

a sharp decline in those who are exposed while the number of those who are susceptible rises and 

then levels off. S vs Q: Shows a decline in those placed under quarantine as the number of 

susceptible people rises; the curve is steep at first and then becomes more rounded. E vs Q: Shows a 

dramatic increase in those under quarantine as the number of exposed people rises, leveling off at an 

equilibrium level. 𝐼𝐴 𝑣𝑠 𝐼𝑆: Shows a nonlinear relationship in which a rise in asymptomatic people 

eventually causes a fall in symptomatic people. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The 3D phase portrait illustrates the dynamics of infectious disease spread and control 

techniques by showing the interactions between: (I) susceptible (S), exposed (E), and quarantined 

(Q) individuals in an epidemiological system. (II) Asymptomatic infected (𝐼𝐴), Symptomatic infected 

( 𝐼𝑆) and recovered individuals 𝑅 inside a system of epidemiology. 

 

 

 

 

( I ) 

 

( II ) 

 



Eurasian J. Sci. Eng., 11(3) (2025), 49-65                                                                                                                          62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The two figures are local sensitivity analyses for COVID-19 computed with full 

normalizations by using MATLAB in this approach, the group of parameters {𝑟1, 𝑟6, 𝑟7} extremely 

sensitive compared with other parameters, especially 𝑟6 is very sensitive to the state variable 𝐸 

(Exposed individuals), (I) Evaluating the responsiveness of all compartments to various parameters. 

(II) Assessing the sensitivity of all compartments to parameters, excluding {𝑟1, 𝑟6, 𝑟7}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The two figures are local sensitivity analyses for COVID-19 computed with half 

normalizations by using MATLAB; in this approach, both parameters 𝑟1 and 𝑟4 are very sensitive 

compare with other parameters, especially 𝑟4 is very sensitive to the state variable 𝑄 (Quarantined 

individuals), in both figures 𝑟3 is very little sensitive to all state variables, (I) evaluation of the 

sensitivity of all compartments concerning various parameters. (II) Assessment of the sensitivity of 

all compartments concerning various parameters, excluding 𝑟1 and 𝑟4. 
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Figure 8: The two figures are local sensitivity analysis for COVID-19 computed with non-

normalizations by using MATLAB, in this approach, the group of parameters {𝑟1, 𝑟2, 𝑟4} are very 

sensitive compare with other parameters, especially 𝑟1 is very sensitive to the state variable 𝑆 

(Susceptible individuals), (I) Analysis of the sensitivity of all compartments in relation to all 

parameters. (II) Examination of the sensitivity of all compartments with respect to the set of 

parameters {𝑟3, 𝑟5, 𝑟6, 𝑟7, 𝑟8, 𝑟9, 𝑟10, 𝑟11, 𝑟12}. 
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